OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: C154–C158

Optical configuration for unpolarized ultra-long-range surface-plasmon-polariton waves

Yi-Jun Jen and Ching-Wei Yu  »View Author Affiliations

Applied Optics, Vol. 50, Issue 9, pp. C154-C158 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (621 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multilayered structures were designed on both sides of a thin silver film to let both transverse-magnetic- and transverse-electric-polarized electromagnetic waves propagate along a thin metal film simultaneously in the same configuration, as so-called long-range surface-plasmon-polariton (LRSPP) waves. Based on the admittance analysis and design, the propagation length of an unpolarized LRSPP wave can be extended by more than 1 order of magnitude compared with previous results.

© 2011 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.2790) Thin films : Guided waves
(310.4165) Thin films : Multilayer design

Original Manuscript: August 9, 2010
Revised Manuscript: November 3, 2010
Manuscript Accepted: November 5, 2010
Published: December 2, 2010

Yi-Jun Jen and Ching-Wei Yu, "Optical configuration for unpolarized ultra-long-range surface-plasmon-polariton waves," Appl. Opt. 50, C154-C158 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Wendler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structure,” J. Appl. Phys. 59, 3289–3291 (1986). [CrossRef]
  2. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991). [CrossRef]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001). [CrossRef]
  4. R. Adato and J. Guo, “Characteristics of ultra-long-range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007). [CrossRef] [PubMed]
  5. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J. Lightwave Technol. 17, 929–941 (1999). [CrossRef]
  6. F. Y. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12, 367–369 (1987). [CrossRef] [PubMed]
  7. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7, 1376–1380 (2007). [CrossRef] [PubMed]
  8. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004). [CrossRef] [PubMed]
  9. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009). [CrossRef]
  10. A. Degiron and D. R. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006). [CrossRef] [PubMed]
  11. J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006). [CrossRef] [PubMed]
  12. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981). [CrossRef]
  13. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. Larsen, and S. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005). [CrossRef]
  14. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477–494 (2006). [CrossRef]
  15. G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151(2001). [CrossRef]
  16. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and T.-Y. Chan, “Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation,” J. Opt. Soc. Am. A 26, 2600–2606 (2009). [CrossRef]
  17. C.-W. Yu and Y.-J. Jen, “Effects of the equivalent coupling layer on ultra-long-range surface-plasmon-polariton waves,” Opt. Express 18, 7982–7993 (2010). [CrossRef] [PubMed]
  18. H. A. Macleod, Thin-Film Optical Filters, 2nd ed.(Hilger, 1986). [CrossRef]
  19. Optical Thin-Film Software: The Essential Macleod (Thin Film Center Inc., Version 8.18.0).
  20. A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506(2009). [CrossRef]
  21. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997). [CrossRef] [PubMed]
  22. M. Takabayashi, M. Haraguchi, and M. Fukui, “Propagation length of guided waves in lossy Si film sandwiched by identical dielectrics,” J. Opt. Soc. Am. B 12, 2406–2411(1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited