OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: C159–C163

Thermal expansion coefficients of obliquely deposited MgF 2 thin films and their intrinsic stress

Cheng-Chung Jaing  »View Author Affiliations


Applied Optics, Vol. 50, Issue 9, pp. C159-C163 (2011)
http://dx.doi.org/10.1364/AO.50.00C159


View Full Text Article

Enhanced HTML    Acrobat PDF (660 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF 2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF 2 films are measured using a phase-shifting Twyman–Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF 2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF 2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF 2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.

© 2011 Optical Society of America

OCIS Codes
(310.3840) Thin films : Materials and process characterization
(310.4925) Thin films : Other properties (stress, chemical, etc.)
(310.6628) Thin films : Subwavelength structures, nanostructures

History
Original Manuscript: August 2, 2010
Revised Manuscript: October 24, 2010
Manuscript Accepted: October 29, 2010
Published: December 2, 2010

Citation
Cheng-Chung Jaing, "Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress," Appl. Opt. 50, C159-C163 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-9-C159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Macleod, Thin-Film Optical Filters (Academic, 2001). [CrossRef]
  2. M. Zukic, D. G. Torr, J. F. Spann, and M. R. Torr, “Vacuum ultraviolet thin films. 1: optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2 and SiO2 thin films,” Appl. Opt. 29, 4284–4292 (1990). [CrossRef] [PubMed]
  3. P. J. Martin, W. G. Sainty, R. P. Netterfield, D. R. Mckenzie, D. J. H. Cockayne, S. H. Sie, O. R. Wood, and H. G. Craighead, “Influence of ion assistance on the optical properties of MgF2,” Appl. Opt. 26, 1235–1239 (1987). [CrossRef] [PubMed]
  4. F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. T. Hart, and T. L. Lichtenstein, “Materials for optical coating in the ultraviolet,” Appl. Opt. 24, 496–500 (1985). [CrossRef] [PubMed]
  5. C. M. Kennemore III and U. J. Gibson, “Ion beam processing for coating MgF2 onto ambient temperature substrates,” Appl. Opt. 23, 3608–3611 (1984). [CrossRef] [PubMed]
  6. C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, and B. H. Liao, “Residual stress in obliquely deposited MgF2 thin films,” Appl. Opt. 47, C266–C270 (2008). [CrossRef] [PubMed]
  7. H. K. Pulker, Coating on Glass (Elsevier, 1984).
  8. C. C. Jaing, M. H. Shiao, C. C. Lee, C. J. Lu, M. C. Liu, C. H. Lee, and H. C. Chen, “Effects of ion assistance and substrate temperature on optical characteristics and microstructure of MgF2 films formed by electron-beam evaporation,” Jpn. J. Appl. Phys. 45, 5027–5029 (2006). [CrossRef]
  9. K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998). [CrossRef]
  10. K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995). [CrossRef]
  11. K. D. Harris, D. Vick, T. Smy, and M. J. Brett, “Column angle variations in porous chevron thin films,” J. Vac. Sci. Technol. A 20, 2062–2067 (2002). [CrossRef]
  12. D. X. Ye, Y. P. Zhao, G. R. Yang, Y. G. Zhao, G. C. Wang, and T. M. Lu, “Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition,” Nanotechnology 13, 615–618 (2002). [CrossRef]
  13. L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997). [CrossRef]
  14. R. N. Tait, T. Smy, and M. J. Brett, “Structural anisotropy in oblique incidence thin metal films,” J. Vac. Sci. Technol. A 10, 1518–1521 (1992). [CrossRef]
  15. N. Kaiser, “Some fundamentals of optical thin film growth,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds. (Springer-Verlag, 2003), pp. 59–80.
  16. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997). [CrossRef]
  17. D. Vick, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339, 88–94 (1999). [CrossRef]
  18. R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otano, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A 15, 2148–2152 (1997). [CrossRef]
  19. R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993). [CrossRef]
  20. A. G. Dirks and H. J. Leamy, “Columnar microstructure in vapor-deposited thin films,” Thin Solid Films 47, 219–233(1977). [CrossRef]
  21. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
  22. I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998). [CrossRef]
  23. P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, A. Lakhtakia, R. Messier, K. Robbie, and M. J. Brett, “Rotating-compensator multichannel transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Thin Solid Films 313–314, 373–378 (1998). [CrossRef]
  24. G. N. Strauss, “Mechanical stress in optical coatings,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds. (Springer-Verlag, 2003), pp. 207–229.
  25. H. K. Pulker, “Mechanical properties of optical thin films,” in Thin Films for Optical Systems, F.R.Flory, ed. (Marcel Dekker, 1995), pp. 455–473.
  26. M. Ohring, The Materials Science of Thin Films(Academic, 1992).
  27. C. C. Lee, C. L. Tien, W. S. Sheu, and C. C. Jaing, “An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films,” Rev. Sci. Instrum. 72, 2128–2133 (2001). [CrossRef]
  28. C. L. Tien, C. C. Jaing, C. C. Lee, and K. P. Chuang, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681–1691(2000).
  29. C. C. Jaing, H. C. Chen, and C. C. Lee, “Effects of thermal annealing on titanium oxide films prepared by ion-assisted deposition,” Opt. Rev. 16, 396–399 (2009). [CrossRef]
  30. C. C. Jaing, C. C. Lee, J. C. Hsu, and C. L. Tien, “Making parabolic mirrors by electron-beam gun evaporation method with ion-assisted deposition,” Appl. Surf. Sci. 170, 654–657(2001). [CrossRef]
  31. C. J. Tang, C. C. Jaing, K. S. Lee, and C. C. Lee, “Residual stress in Ta2O5-SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering,” Appl. Opt. 47, C167–C171 (2008). [CrossRef] [PubMed]
  32. C. J. Tang, C. C. Jaing, K. Wu, and C. C. Lee, “Residual stress of graded-index-like films deposited by radio frequency ion-beam sputtering,” Thin Solid Films 517, 1746–1749 (2009). [CrossRef]
  33. C. C. Lee, K. H. Lee, C. J. Tang, C. C. Jaing, and H. C. Chen, “Reduction of residual stress in optical silicon nitcide thin films prepared by radio-frequency ion beam sputtering deposition,” Opt. Eng. 49, 063802 (2010). [CrossRef]
  34. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175(1909). [CrossRef]
  35. G. C. A. M. Janssen, M. M. Abdalla, F. van Keulen, B. R. Pujada, and B. van Venrooy, “Celebrating the 100th anniversary of the Stoney equation for film stress: developments from polycrystalline steel strips to single crystal silicon wafers,” Thin Solid Films 517, 1858–1867 (2009). [CrossRef]
  36. R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Appl. Opt. 41, 3211–3217(2002). [CrossRef] [PubMed]
  37. M. Miyagi and N. Funakoshi, “Internal stress and thermal expansion coefficient of GDa-Si films,” Jpn. J. Appl. Phys. 20, 289–290 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited