OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: C178–C187

Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range

Laurent Gallais, Benoît Mangote, Myriam Zerrad, Mireille Commandré, Andrius Melninkaitis, Julius Mirauskas, Maksim Jeskevic, and Valdas Sirutkaitis  »View Author Affiliations


Applied Optics, Vol. 50, Issue 9, pp. C178-C187 (2011)
http://dx.doi.org/10.1364/AO.50.00C178


View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-damage thresholds and morphologies of hafnia single layers exposed under femtosecond, picosecond, and nanosecond single pulses ( 1030 / 1064 nm ) are reported. The samples were made with different deposition parameters in order to study how the damage behavior of the samples evolves with the pulse duration and how it is linked to the deposition process. In the femtosecond to picosecond regime, the scaling law of the laser-induced damage threshold as a function of pulse duration is in good agreement with the models of photo and avalanche ionization based on the rate equation for free electron generation. However, differences in the damage morphologies between samples are shown. No correlation between the nanosecond and femtosecond/picosecond laser-damage resistance of hafnia coatings could be established. We also report evidence of the transition in damage mechanisms for hafnia, from an ablation process linked to intrinsic properties of the material to a defect-induced process, that exists between a few picoseconds and a few tens of picoseconds.

© 2011 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.7090) Lasers and laser optics : Ultrafast lasers
(310.1620) Thin films : Interference coatings
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

History
Original Manuscript: July 30, 2010
Revised Manuscript: October 21, 2010
Manuscript Accepted: October 29, 2010
Published: December 6, 2010

Citation
Laurent Gallais, Benoît Mangote, Myriam Zerrad, Mireille Commandré, Andrius Melninkaitis, Julius Mirauskas, Maksim Jeskevic, and Valdas Sirutkaitis, "Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range," Appl. Opt. 50, C178-C187 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-9-C178


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993). [CrossRef]
  2. P. André, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications,” J. Vac. Sci. Technol. 18, 2372–2377(2000). [CrossRef]
  3. M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000). [CrossRef]
  4. D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005). [CrossRef]
  5. C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008). [CrossRef]
  6. J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008). [CrossRef]
  7. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005). [CrossRef]
  8. C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009). [CrossRef]
  9. L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47, C107–C113 (2008). [CrossRef]
  10. N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008). [CrossRef]
  11. M. Dunne, “A high-power laser fusion facility for Europe,” Nature Phys. 2, 2–5 (2006). [CrossRef]
  12. E. Gerstner, “Extreme light,” Nature 446, 16–18 (2007). [CrossRef]
  13. H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064nm,” Opt. Eng. 46, 023402 (2007). [CrossRef]
  14. D. L. Wood, K. Nassau, T. Y. Kometai, and D. L. Nash, “Optical properties of cubic hafnia stabilized with yttrium,” Appl. Opt. 29, 604–607 (1990). [CrossRef]
  15. A. Ciapponi, F. R. Wagner, S. Palmier, J. Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129, 1786–1789 (2009). [CrossRef]
  16. R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Appl. Opt. 41, 3211–3217(2002). [CrossRef]
  17. R. Picard, D. Milam, and R. Bradbury, “Statistical analysis of defect-caused damage in thin films,” Appl. Opt. 16, 1563–1571(1977). [CrossRef]
  18. S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884(2003). [CrossRef]
  19. “Determination of laser-damage threshold of optical surfaces. Part 1: 1-on-1 test,” ISO Standard 112541 (International Organization for Standardization, 2000).
  20. J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47, 5272–5280 (2008). [CrossRef]
  21. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175–190 (1997). [CrossRef]
  22. C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999). [CrossRef]
  23. Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2-SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335–339 (2005). [CrossRef]
  24. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005). [CrossRef]
  25. L. Gallais and J.-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42, 960–971 (2003). [CrossRef]
  26. A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006). [CrossRef]
  27. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009). [CrossRef]
  28. L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007). [CrossRef]
  29. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996). [CrossRef]
  30. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974). [CrossRef]
  31. L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010). [CrossRef]
  32. D. Ristau and J. Ebert, “Development of a thermographic laser calorimeter,” Appl. Opt. 25, 4571–4578 (1986). [CrossRef]
  33. J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989). [CrossRef]
  34. S. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide films,” Phys. Rev. B 52, 253–257 (1995). [CrossRef]
  35. E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. William, “Pulse width and focal volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2149 (1981). [CrossRef]
  36. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006). [CrossRef]
  37. L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited