OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: C188–C196

Characterization of zirconia– and niobia–silica mixture coatings produced by ion-beam sputtering

Andrius Melninkaitis, Tomas Tolenis, Lina Mažulė, Julius Mirauskas, Valdas Sirutkaitis, Benoit Mangote, Xinghai Fu, Myriam Zerrad, Laurent Gallais, Mireille Commandré, Simonas Kičas, and Ramutis Drazdys  »View Author Affiliations

Applied Optics, Vol. 50, Issue 9, pp. C188-C196 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



ZrO 2 SiO 2 and Nb 2 O 5 SiO 2 mixture coatings as well as those of pure zirconia ( ZrO 2 ), niobia ( Nb 2 O 5 ), and silica ( SiO 2 ) deposited by ion-beam sputtering were investigated. Refractive-index dispersions, bandgaps, and volumetric fractions of materials in mixed coatings were analyzed from spectrophotometric data. Optical scattering, surface roughness, nanostructure, and optical resistance were also studied. Zirconia– silica mixtures experience the transition from crystalline to amorphous phase by increasing the content of SiO 2 . This also results in reduced surface roughness. All niobia and silica coatings and their mixtures were amorphous. The obtained laser-induced damage thresholds in the subpicosecond range also correlates with respect to the silica content in both zirconia– and niobia–silica mixtures.

© 2011 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.4670) Materials : Optical materials
(310.1620) Thin films : Interference coatings
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties
(260.2065) Physical optics : Effective medium theory

Original Manuscript: July 30, 2010
Manuscript Accepted: September 13, 2010
Published: December 10, 2010

Andrius Melninkaitis, Tomas Tolenis, Lina Mažulė, Julius Mirauskas, Valdas Sirutkaitis, Benoit Mangote, Xinghai Fu, Myriam Zerrad, Laurent Gallais, Mireille Commandré, Simonas Kičas, and Ramutis Drazdys, "Characterization of zirconia– and niobia–silica mixture coatings produced by ion-beam sputtering," Appl. Opt. 50, C188-C196 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Martin, “Ion-based methods for optical thin film deposition,” J. Mater. Sci. 21, 1–25 (1986). [CrossRef]
  2. J. R. Sites, H. Demiryont, and D. B. Kerwin, “Summary abstract: ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656–656 (1985). [CrossRef]
  3. V. Janicki, D. Gäbler, S. Wilbrandt, R. Leitel, O. Stenzel, N. Kaiser, M. Lappschies, B. Görtz, D. Ristau, C. Rickers, and M. Vergöhl, “Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating,” Appl. Opt. 45, 7851–7857 (2006). [CrossRef] [PubMed]
  4. M. Jupé, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Applications of mixture oxide materials for fs optics,” in Optical Interference Coatings (Optical Society of America, 2007), p. TuA6.
  5. D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008). [CrossRef]
  6. S. Chao, W.-H. Wang, and C.-C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2–SiO2 mixed films,” Appl. Opt. 40, 2177–2182 (2001). [CrossRef]
  7. B. J. Pond, J. I. DeBar, C. K. Carniglia, and T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt. 28, 2800–2805 (1989). [CrossRef] [PubMed]
  8. M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt. 45, 1502–1506 (2006). [CrossRef] [PubMed]
  9. D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008). [CrossRef]
  10. C.-C. Lee, C.-J. Tang, and J.-Y. Wu, “Rugate filter made with composite thin films by ion-beam sputtering,” Appl. Opt. 45, 1333–1337 (2006). [CrossRef] [PubMed]
  11. C.-J. Tang, C.-C. Jaing, K.-S. Lee, and C.-C. Lee, “Residual stress in Ta2O5–SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering,” Appl. Opt. 47, C167–C171 (2008). [CrossRef] [PubMed]
  12. H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 616–620 (2004). [CrossRef]
  13. D. M. Sanders, E. N. Farabaugh, W. S. Hurst, and W. K. Haller, “Summary abstract: an advanced multi-chamber system for preparation of amorphous thin films by coevaporation and their subsequent characterization by AES, ESCA, SIMS and ISS methods,” J. Vac. Sci. Technol. 18, 1308–1310 (1981). [CrossRef]
  14. H. Sankur, W. J. Gunning, and J. F. DeNatale, “Intrinsic stress and structural properties of mixed composition thin films,” Appl. Opt. 27, 1564–1567 (1988). [CrossRef] [PubMed]
  15. N. K. Sahoo and A. P. Shapiro, “Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution,” Appl. Opt. 37, 698–718 (1998). [CrossRef]
  16. S. Larouche, H. Szymanowski, J. E. Klemberg-Sapieha, L. Martinu, and S. C. Gujrathi, “Microstructure of plasma-deposited SiO2/TiO2 optical films,” J. Vac. Sci. Technol. 22, 1200–1207 (2004). [CrossRef]
  17. M. Yoshida and P. N. Prasad, “Sol-gel-processed SiO2/TiO2/poly(vinylpyrrolidone) composite materials for optical waveguides,” Chem. Mater. 8, 235–241 (1996). [CrossRef]
  18. V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373(2008). [CrossRef]
  19. D. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982). [CrossRef]
  20. A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986). [CrossRef]
  21. N. K. Sahoo, S. Thakur, and R. B. Tokas, “Achieving superior band gap, refractive index and morphology in composite oxide thin film systems violating the moss rule,” J. Phys. D 39, 2571–2579 (2006). [CrossRef]
  22. D. H. Kuo and C. H. Chien, “Growth and properties of sputtered zirconia and zirconia–silica thin films,” Thin Solid Films 429, 40–45 (2003). [CrossRef]
  23. J. Sancho-Parramon and V. Janicki, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5–SiO2 mixtures,” J. Phys. D 41, 215304 (2008). [CrossRef]
  24. J. Sancho-Parramon, V. Janicki, and H. Zorc, “Compositional dependence of absorption coefficient and band-gap for Nb2O5–SiO2 mixture thin films,” Thin Solid Films 516, 5478–5482 (2008). [CrossRef]
  25. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006). [CrossRef] [PubMed]
  26. URL: http://www.optilayer.com.
  27. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904).
  28. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 416, 636–664 (1935). [CrossRef]
  29. A. H. A. Lorentz, “Ueber die beziehung zwischen der fortpflanzungsgeschwindigkeit des lichtes und der koerperdichte,” Ann. Phys. 245, 641–665 (1880). [CrossRef]
  30. L. Lorenz, “Ueber die refractionsconstante,” Ann. Phys. 247, 70–103 (1880). [CrossRef]
  31. C. Rotaru, S. Nastase, and N. Tomozeiu, “Amorphous phase influence on the optical bandgap of polysilicon,” Phys. Status Solidi A 171, 365–370 (1999). [CrossRef]
  32. F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003). [CrossRef]
  33. C. Amra, “Light scattering from multilayer optics. I. Tools of investigation,” J. Opt. Soc. Am. A 11, 197–210 (1994). [CrossRef]
  34. C. Amra, “Light scattering from multilayer optics. II. Application to experiment,” J. Opt. Soc. Am. A 11, 211–226(1994). [CrossRef]
  35. J. M. Elson, J. P. Rahn, and J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219(1983). [CrossRef] [PubMed]
  36. A. Duparré and S. Kassam, “Relation between light scattering and the microstructure of optical thin films,” Appl. Opt. 32, 5475–5480 (1993). [CrossRef] [PubMed]
  37. C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45–10.6 μm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993). [CrossRef] [PubMed]
  38. International Organization for Standardization, “Optics and optical instruments. Test methods for radiation scattered by optical components,” ISO 13696 (International Organization for Standardization, 2002).
  39. International Organization for Standardization, “Determination of laser-induced damage threshold of optical surfaces—part 1: 1-on-1 test, ” ISO 11254-1 (International Organization for Standardization, 2000).
  40. L. Gallais, B. Mangote, M. Zerrad, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).
  41. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006). [CrossRef]
  42. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005). [CrossRef]
  43. C. Deumié, R. Richier, P. Dumas, and C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996). [CrossRef] [PubMed]
  44. M. Zerrad, C. Deumié, M. Lequime, and C. Amra, “An alternative scattering method to characterize surface roughness from transparent substrates,” Opt. Express 15, 9222–9231(2007). [CrossRef] [PubMed]
  45. A. L. Patterson, “The Scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978–982 (1939). [CrossRef]
  46. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009). [CrossRef] [PubMed]
  47. L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112(2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited