OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: C19–C26

Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings

James B. Oliver, Pete Kupinski, Amy L. Rigatti, Ansgar W. Schmid, John C. Lambropoulos, Semyon Papernov, Alexei Kozlov, John Spaulding, Daniel Sadowski, Z. Roman Chrzan, Robert D. Hand, Desmond R. Gibson, Ian Brinkley, and Frank Placido  »View Author Affiliations


Applied Optics, Vol. 50, Issue 9, pp. C19-C26 (2011)
http://dx.doi.org/10.1364/AO.50.000C19


View Full Text Article

Enhanced HTML    Acrobat PDF (933 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasma-assisted electron-beam evaporation leads to changes in the crystallinity, density, and stresses of thin films. A dual-source plasma system provides stress control of large-aperture, high-fluence coatings used in vacuum for substrates 1 m in aperture.

© 2011 Optical Society of America

OCIS Codes
(310.1860) Thin films : Deposition and fabrication
(310.4925) Thin films : Other properties (stress, chemical, etc.)

History
Original Manuscript: July 30, 2010
Manuscript Accepted: August 19, 2010
Published: October 8, 2010

Citation
James B. Oliver, Pete Kupinski, Amy L. Rigatti, Ansgar W. Schmid, John C. Lambropoulos, Semyon Papernov, Alexei Kozlov, John Spaulding, Daniel Sadowski, Z. Roman Chrzan, Robert D. Hand, Desmond R. Gibson, Ian Brinkley, and Frank Placido, "Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings," Appl. Opt. 50, C19-C26 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-9-C19


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).
  2. E. Lavastre, J. Néauport, J. Duchesne, H. Leplan, and F. Houbre, “Polarizers coatings for the Laser MegaJoule prototype,” in Optical Interference Coatings, OSA Technical Digest(Optical Society of America, 2004), paper TuF3.
  3. Y.-H. Chuang, L. Zheng, and D. D. Meyerhofer, “Propagation of light pulses in a chirped-pulse-amplification laser,” IEEE J. Quantum Electron. 29, 270–280 (1993). [CrossRef]
  4. H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995). [CrossRef]
  5. D. J. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings,” Proc. SPIE 7132, 71320E (2008). [CrossRef]
  6. M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000). [CrossRef]
  7. R. Thielsch, A. Gatto, J. Herber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002). [CrossRef]
  8. F. Placido, D. Gibson, E. Waddell, and E. Crossan, “Characterisation of optical thin films obtained by plasma ion assisted deposition,” Proc. SPIE 6286, 628602 (2006). [CrossRef]
  9. H. R. Kaufman and J. M. Harper, “Ion-assist applications of broad-beam ion sources,” Proc. SPIE 5527, 50–68 (2004). [CrossRef]
  10. M. Kennedy, D. Ristau, and H. S. Niederwald, “Ion beam-assisted deposition of MgF2 and YbF3 films,” Thin Solid Films 333, 191–195 (1998). [CrossRef]
  11. E. H. Hirsch and I. K. Varga, “Thin film annealing by ion bombardment,” Thin Solid Films 69, 99–105 (1980). [CrossRef]
  12. B. G. Bovard, “Ion-assisted deposition,” in Thin Films for Optical Systems, F.R.Flory ed. (Marcel Dekker, 1995), pp. 117–132.
  13. J. R. Kahn, H. R. Kaufman, and V. V. Zhurin, “Substrate heating using several configurations of an end-hall ion source,” in 46th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2003), pp. 621–625 (paper 110).
  14. D. E. Morton and V. Fridman, “Measurement and correlation of ion beam current density to moisture stability of oxide film stacks fabricated by cold cathode ion assisted deposition,” in Proceedings of the 41st Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, 2003), pp. 297–302 (paper 53).
  15. K.-H. Müller, “Monte Carlo calculation for structural modifications in ion-assisted thin film deposition due to thermal spikes,” J. Vac. Sci. Technol. A 4, 184–188 (1986). [CrossRef]
  16. J. D. Targove and H. A. Macleod, “Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition,” Appl. Opt. 27, 3779–3781 (1988). [CrossRef]
  17. G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999). [CrossRef]
  18. H. Kersten, H. Steffen, D. Vender, and H. E. Wagner, “On the ion energy transfer to the substrate during titanium deposition in a hallow cathode arc discharge,” Vacuum 46, 305–308 (1995). [CrossRef]
  19. J. V. Sanders, “Structure of evaporated metal films,” in Chemisorption and Reactions on Metallic Films, J.R.Anderson ed., Physical Chemistry, a Series of Monographs (Academic, 1971), pp. 1–38.
  20. J. A. Thorton, “Structure-zone models of thin films,” Proc. SPIE 821, 95–103 (1988).
  21. B. A. Movchan and A. V. Demchishin, “Structure and properties of thick vacuum-condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).
  22. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).
  23. J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture National Ignition Facility substrates in a planetary rotation system,” Appl. Opt. 45, 3097–3105(2006). [CrossRef]
  24. H. R. Kaufman, R. S. Robinson, and R. I. Seddon, “End-Hall ion source,” J. Vac. Sci. Technol. A 5, 2081–2084 (1987). [CrossRef]
  25. D. Gibson, European patent EP 1 154 459 A2 (14 November 2001).
  26. S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998). [CrossRef]
  27. S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432(1997). [CrossRef]
  28. J. B. Oliver, J. Howe, A. Rigatti, D. J. Smith, and C. Stolz, “High precision coating technology for large aperture NIF optics,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2001), paper ThD2.
  29. B. Andre, J. Dijon, and B. Rafin, “Thin hafnium oxide and method for depositing same,” U.S. patent 7,037,595 (2 May 2006).
  30. J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008). [CrossRef]
  31. B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, 1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited