OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: C279–C285

Evaluation and analysis of polished fused silica subsurface quality by the nanoindenter technique

Bin Ma, Zhengxiang Shen, Pengfei He, Fei Sha, Chunliang Wang, Bin Wang, Yiqin Ji, Huasong Liu, Weihao Li, and Zhanshan Wang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 9, pp. C279-C285 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We evaluate the subsurface quality of polished fused silica samples using the nanoindenter technique. Two kinds of samples, consisting of hundreds of nanometers and micrometers of subsurface damage layers, are fabricated by controlling the grinding and polishing processes, and the subsurface quality has been verified by the chemical etching method. Then several nanoindentation experiments are performed using the Berkovich tip to investigate the subsurface quality. Some differences are found by relative measurements in terms of the relationship between the total penetration and the peak load on the surfaces, the modulus calculated over the defined depths and from unload, and the indented morphology at a constant load near the surface collapse threshold. Finally, the capabilities of such a mechanical method for detecting subsurface flaws are discussed and analyzed.

© 2011 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(230.1150) Optical devices : All-optical devices

Original Manuscript: August 2, 2010
Revised Manuscript: November 20, 2010
Manuscript Accepted: December 6, 2010
Published: January 18, 2011

Bin Ma, Zhengxiang Shen, Pengfei He, Fei Sha, Chunliang Wang, Bin Wang, Yiqin Ji, Huasong Liu, Weihao Li, and Zhanshan Wang, "Evaluation and analysis of polished fused silica subsurface quality by the nanoindenter technique," Appl. Opt. 50, C279-C285 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006). [CrossRef]
  2. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005). [CrossRef]
  3. G. Razé, J.-M. Morchain, M. Loiseau, L. Lamaignére, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003). [CrossRef]
  4. M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006). [CrossRef]
  5. C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999). [CrossRef]
  6. S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001). [CrossRef]
  7. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17, 3543–3554 (2009). [CrossRef] [PubMed]
  8. Z. M. Liao, S. J. Cohen, and J. R. Taylor, “Total internal reflection microscopy (TIRM) as a nondestructive subsurface damage assessment tool,” Proc. SPIE 2428, 43–53 (1995). [CrossRef]
  9. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some crystalline materials,” Appl. Opt. 44, 2241–2249 (2005). [CrossRef] [PubMed]
  10. J. Wang, R. L. Maier, and J. H. Burning, “Surface characterization of optically polished CaF2 crystal by quasi-Brewster angle technique,” Proc. SPIE 5188, 106–114 (2003). [CrossRef]
  11. D. Black, R. Polvani, L. Braun, B. Hockey, and G. White, “Detection of subsurface damage: studies in sapphire,” Proc. SPIE 3060, 102–114 (1997). [CrossRef]
  12. T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, “Cross-section transmission electron microscope observation of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65, 2553–2555 (1994). [CrossRef]
  13. A. Leonardi, F. Furgiuele, R. J. K. Wood, and S. Syngellakis, “Numerical analysis of brittle materials fractured by sharp indenters,” Eng. Frac. Mech. 77, 264–276 (2010). [CrossRef]
  14. R. S. Polvani and C. Evans, “Microindentation as a technique for assessing subsurface damage in optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (NIST, 1990).
  15. F. Yang, “Effect of subsurface damage on indentation behavior of ground ULE™ glass,” J. Non-Cryst. Solids 351, 3861–3865(2005). [CrossRef]
  16. F. Yang and P. Fei, “Microindentation of ground silicon wafers,” Semicond. Sci. Technol. 19, 1165–1168 (2004). [CrossRef]
  17. S. R. Jian, J. Y. Juang, and Y. S. Lai, “Cross-sectional transmission electron microscopy observations of structural damage in Al0.16Ga0.84N thin film under contact loading,” J. Appl. Phys. 103, 033503 (2008). [CrossRef]
  18. J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, “Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon,” Appl. Phys. Lett. 77, 3749–3751 (2000). [CrossRef]
  19. S. Ruffell, J. E. Bradby, and J. S. Williams, “High pressure crystalline phase formation during nanoindentation: amorphous versus crystalline silicon,” Appl. Phys. Lett. 89, 091919(2006). [CrossRef]
  20. G. N. Babini, A. Bellosi, and C. Galassi, “Characterization of hot-pressed silicon nitride-based materials by microhardness measurements,” J. Mater. Sci. 221687–1693 (1987). [CrossRef]
  21. J. Jang, M. J. Lance, S. Q. Wen, and G. M. Pharr, “Evidence for nanoindentation-induced phase transformations in germanium,” Appl. Phys. Lett. 86, 131907 (2005). [CrossRef]
  22. J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002). [CrossRef]
  23. C. R. Taylor, E. A. Stach, G. Salamo, and A. P. Malshe, “Nanoscale dislocation patterning by ultralow load indentation,” Appl. Phys. Lett. 87, 073108 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited