OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: C329–C339

Bringing some photonic structures for solar cells to the fore

Ludovic Escoubas, Jean-Jacques Simon, Philippe Torchio, David Duché, Sylvain Vedraine, Wilfried Vervisch, Judikaël Le Rouzo, François Flory, Guillaume Rivière, Gizachew Yeabiyo, and Hassina Derbal  »View Author Affiliations


Applied Optics, Vol. 50, Issue 9, pp. C329-C339 (2011)
http://dx.doi.org/10.1364/AO.50.00C329


View Full Text Article

Enhanced HTML    Acrobat PDF (1550 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A review on the use of photonic structures enabling a better absorption of solar radiation within solar cells is proposed. Specific geometric configurations, such as folded solar cells or fiber-based architectures, are shown to be promising solutions to reach better light absorption. Electromagnetic optimization of thin-film solar cells and the use of angular thin-film filters, proposed by several research groups, also provide solutions to better concentrate solar radiation within the active layers of solar cells. Finally, results on “photonized” solar cells comprising gratings or more advanced photonic components, such as photonic crystals or plasmonic structures, and their effects on light–matter interaction in solar cells are highlighted.

© 2011 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals
(250.5403) Optoelectronics : Plasmonics
(310.6845) Thin films : Thin film devices and applications

History
Original Manuscript: July 23, 2010
Revised Manuscript: December 1, 2010
Manuscript Accepted: December 6, 2010
Published: January 28, 2011

Virtual Issues
(2011) Advances in Optics and Photonics

Citation
Ludovic Escoubas, Jean-Jacques Simon, Philippe Torchio, David Duché, Sylvain Vedraine, Wilfried Vervisch, Judikaël Le Rouzo, François Flory, Guillaume Rivière, Gizachew Yeabiyo, and Hassina Derbal, "Bringing some photonic structures for solar cells to the fore," Appl. Opt. 50, C329-C339 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-9-C329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998). [CrossRef]
  2. M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy Mater. 74, 181–192 (2003). [CrossRef]
  3. M. A. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost,” Prog. Photovolt. 9, 123–135 (2001). [CrossRef]
  4. M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004). [CrossRef]
  5. C. W. Jiang and M. A. Green, “Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications,” J. Appl. Phys. 99, 114902 (2006). [CrossRef]
  6. G. Beaucarne, S. Bourdais, A. Slaoui, and J. Poortmans, “Thin-film polycrystalline Si solar cells on foreign substrates: film formation at intermediate temperatures (700–1300 °C),” Appl. Phys. A 79, 469–480 (2004). [CrossRef]
  7. F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997). [CrossRef]
  8. D. Carlson and C. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976). [CrossRef]
  9. C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007). [CrossRef]
  10. J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell—crystalline or amorphous cell behavior?,” Appl. Phys. Lett. 65, 860–862 (1994). [CrossRef]
  11. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000). [CrossRef]
  12. I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008). [CrossRef]
  13. N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. 11, 437–443 (2003). [CrossRef]
  14. O. Savadogo, “Chemically and electrochemically deposited thin films for solar energy materials,” Sol. Energy Mater. Sol. Cells 52, 361–388 (1998). [CrossRef]
  15. J. F. Guillemoles, L. KronikD. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se-2-based solar cells,” J. Phys. Chem. B 104, 4849–4862 (2000). [CrossRef]
  16. K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480, 499–502 (2005). [CrossRef]
  17. H. W. Schock and R. Noufi, “CIGS-based solar cells for the next millennium,” Prog. Photovolt. 8, 151–160 (2000). [CrossRef]
  18. J. Britt and C. Ferekides, “Thin-film Cds/Cdte solar cell with 15.8 percent efficiency,” Appl. Phys. Lett. 62, 2851–2852 (1993). [CrossRef]
  19. R. W. Birkmire and E. Eser, “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci. 27, 625–653 (1997). [CrossRef]
  20. K. D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, “Stability of CdTe/CdS thin-film solar cells,” Sol. Energy Mater. Sol. Cells 62, 295–325 (2000). [CrossRef]
  21. N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, H. Uda, and T. Yamashita, “Screen printed thin-film Cds-Cdte solar-cell,” Jpn. J. Appl. Phys. 19, 703–712 (1980). [CrossRef]
  22. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovolt. 12, 69–92 (2004). [CrossRef]
  23. K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197, 733–742 (1999). [CrossRef]
  24. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003). [CrossRef]
  25. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004). [CrossRef]
  26. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006). [CrossRef]
  27. D. Wohrle and D. Meissner, “Organic solar cells,” Adv. Mater. 3, 129–138 (1991). [CrossRef]
  28. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005). [CrossRef] [PubMed]
  29. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells,” Adv. Mater. 19, 1551–1566(2007). [CrossRef]
  30. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007). [CrossRef] [PubMed]
  31. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993). [CrossRef]
  32. G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007). [CrossRef]
  33. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005). [CrossRef] [PubMed]
  34. A. Hagfeldt and M. Gratzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000). [CrossRef] [PubMed]
  35. R. Bisconti and H. A. Ossenbrink, “Optical modelling of silicon cells in spherical shape,” Sol. Energy Mater. Sol. Cells 48, 1–6(1997). [CrossRef]
  36. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324, 232–235 (2009). [CrossRef] [PubMed]
  37. J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90, 133515 (2007). [CrossRef]
  38. J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90, 063501 (2007). [CrossRef]
  39. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501(2007). [CrossRef]
  40. J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006). [CrossRef]
  41. B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94, 043302 (2009). [CrossRef]
  42. N.-K. Perssona, M. Schubert, and O. Inganas, “Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer,” Sol. Energy Mater. Sol. Cells 83, 169–186 (2004). [CrossRef]
  43. J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007). [CrossRef] [PubMed]
  44. D. P. Gruber, G. Meinhardt, and W. Papousek, “Spatial distribution of light absorption in organic photovoltaic devices,” Sol. Energy Mater. 79, 697–704 (2005). [CrossRef]
  45. D. P. Gruber, G. Meinhardt, and W. Papousek, “Modelling the light absorption in organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 87, 215–223 (2005). [CrossRef]
  46. F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007). [CrossRef]
  47. H. Hoppe, S. Shokhovets, and G. Gobsch, “Inverse relation between photocurrent and absorption layer thickness in polymer solar cells,” Phys. Status Solidi 1, R40–R42 (2007). [CrossRef]
  48. S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16, 9332–9343 (2008). [CrossRef] [PubMed]
  49. M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination,” Prog. Photovolt. 11, 97–104 (2003) [CrossRef]
  50. A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009). [CrossRef]
  51. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226, 81–88 (2003). [CrossRef]
  52. R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16, 19304–19309 (2008). [CrossRef]
  53. R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17, 21590–21597 (2009). [CrossRef] [PubMed]
  54. S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007). [CrossRef]
  55. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16, 7969–7975 (2008). [CrossRef] [PubMed]
  56. M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kima, “Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography,” Appl. Phys. Lett. 90, 123113 (2007). [CrossRef]
  57. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006). [CrossRef]
  58. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. 14, 13–24 (2006). [CrossRef]
  59. F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87, 481–492 (2005). [CrossRef]
  60. C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006). [CrossRef]
  61. S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008). [CrossRef]
  62. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004). [CrossRef]
  63. L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000). [CrossRef]
  64. A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008). [CrossRef]
  65. M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007). [CrossRef]
  66. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381(2009). [CrossRef] [PubMed]
  67. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238–15248 (2008). [CrossRef] [PubMed]
  68. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006). [CrossRef]
  69. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007). [CrossRef] [PubMed]
  70. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009). [CrossRef] [PubMed]
  71. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009). [CrossRef] [PubMed]
  72. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009). [CrossRef]
  73. D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008). [CrossRef]
  74. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009). [CrossRef] [PubMed]
  75. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008). [CrossRef] [PubMed]
  76. K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006). [CrossRef]
  77. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  78. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008). [CrossRef]
  79. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited