OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: C55–C61

Recent development and new ideas in the field of dispersive multilayer optics

Volodymyr Pervak  »View Author Affiliations


Applied Optics, Vol. 50, Issue 9, pp. C55-C61 (2011)
http://dx.doi.org/10.1364/AO.50.000C55


View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dispersive-mirror-based laser permits a dramatic simplification of high-power femtosecond and attosecond systems and affords promise for their further development toward shorter pulse durations, higher peak powers, and higher average powers with user-friendly systems. The result of the continuous development of dispersive mirrors permits pulse compression down to almost single cycle pulses of 3 fs duration. These design approaches together with the existing modern deposition technology pave the way for the manufacture of dielectric multilayer coatings able to compress pulses of tens of picoseconds duration down to a few femtoseconds.

© 2011 Optical Society of America

OCIS Codes
(310.1620) Thin films : Interference coatings
(320.5520) Ultrafast optics : Pulse compression
(320.7090) Ultrafast optics : Ultrafast lasers
(310.4165) Thin films : Multilayer design

History
Original Manuscript: July 26, 2010
Revised Manuscript: August 31, 2010
Manuscript Accepted: September 17, 2010
Published: October 25, 2010

Citation
Volodymyr Pervak, "Recent development and new ideas in the field of dispersive multilayer optics," Appl. Opt. 50, C55-C61 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-9-C55


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000). [CrossRef]
  2. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513(2001). [CrossRef] [PubMed]
  3. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  4. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. Hänsch, and F. Krausz, “Observation of light-phase-sensitive photoemission from a metal,” Phys. Rev. Lett. 85, 740–743 (2000). [CrossRef] [PubMed]
  5. A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611–615 (2003). [CrossRef] [PubMed]
  6. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994). [CrossRef] [PubMed]
  7. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997). [CrossRef] [PubMed]
  8. V. Laude and P. Tournois, “Chirped mirror pairs for ultrabroadband dispersion control,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 187–188.
  9. N. Matuschek, F. X. Kärtner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35, 129–137(1999). [CrossRef]
  10. R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: Chirped dielectric mirrors and multicavity Gires–Tournois interferometers,” Appl. Phys. B 70, 51–57 (2000).
  11. B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires–Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25, 275–277 (2000). [CrossRef]
  12. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultrasmooth broadband dispersion characteristics,” Appl. Phys. B 71, 509–522 (2000). [CrossRef]
  13. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband double-chirped mirror pairs for generation of octave spectra,” J. Opt. Soc. Am. B 18, 882–885 (2001). [CrossRef]
  14. T. R. Schibli, O. Kuzucu, Jung-Won Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9, 990–1001 (2003). [CrossRef]
  15. G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, “Tilted-front-interface chirped mirrors,” J. Opt. Soc. Am. B 18, 1747–1750 (2001). [CrossRef]
  16. G. Steinmeyer, “Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave,” Opt. Express 11, 2385–2396 (2003). [CrossRef] [PubMed]
  17. P. Dombi, V. S. Yakovlev, K. O’Keeffe, T. Fuji, M. Lezius, and G. Tempea, “Pulse compression with time-domain optimized chirped mirrors,” Opt. Express 13, 10888–10894 (2005). [CrossRef] [PubMed]
  18. P. Baum, M. Breuer, E. Riedle, and G. Steinmeyer, “Brewster-angled chirped mirrors for broadband pulse compression without dispersion oscillations,” Opt. Lett. 31, 2220–2222(2006). [CrossRef] [PubMed]
  19. V. Pervak, F. Krausz, and A. Apolonski, “Dispersion control over the UV-VIS-NIR spectral range with HfO2/SiO2 chirped dielectric multilayers,” Opt. Lett. 32, 1183–1185 (2007). [CrossRef] [PubMed]
  20. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B. 87, 5–12 (2007). [CrossRef]
  21. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008). [CrossRef] [PubMed]
  22. M. Trubetskov, A. Tikhonravov, and V. Pervak, “Time-domain approach for designing dispersive mirrors based on the needle optimization technique. Theory.,” Opt. Express 16, 20637–20647 (2008). [CrossRef] [PubMed]
  23. V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses,” Opt. Express 17, 2207–2217 (2009). [CrossRef] [PubMed]
  24. V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17, 7943–7951 (2009). [CrossRef] [PubMed]
  25. V. Pervak, I. Ahmad, S. A. Trushin, Zs. Major, A. Apolonski, S. Karsch, and F. Krausz, “Chirped-pulse amplification of laser pulses with dispersive mirrors,” Opt. Express 17, 19204–19212 (2009). [CrossRef]
  26. N.Kaiser and H.K.Pulker, eds., Optical Interference Coatings (Springer, 2003).
  27. M. K. Trubetskov and A. V. Tikhonravov, “Robust synthesis of multilayer coatings,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper TuA4.
  28. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer Thin Film Software,” http://www.optilayer.com.
  29. TFcalc Software, http://www.sspectra.com.
  30. A. Macleod, “Essential Macleod,” http://www.thinfilmcenter.com/.
  31. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658(1996). [CrossRef] [PubMed]
  32. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47, C124–C130 (2008). [CrossRef] [PubMed]
  33. T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal and oblique-incidence antireflection coatings,” Appl. Opt. 47, 3109–3113(2008). [CrossRef] [PubMed]
  34. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007). [CrossRef]
  35. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996). [CrossRef] [PubMed]
  36. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited