OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 1 — Jan. 1, 2012
  • pp: 102–113

Joint optimization of phase diversity and adaptive optics: demonstration of potential

Visa Korkiakoski, Christoph U. Keller, Niek Doelman, Rufus Fraanje, and Michel Verhaegen  »View Author Affiliations

Applied Optics, Vol. 51, Issue 1, pp. 102-113 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (610 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study different possibilities to use adaptive optics (AO) and phase diversity (PD) together in a jointly optimized system. The potential of the joint system is demonstrated through numerical simulations. We find that the most significant benefits are obtained from the improved deconvolution of AO-corrected wavefronts and the additional wavefront sensor (WFS) information that reduces the computational demands of PD algorithms. When applied together, it is seen that the image error can be reduced by 20% compared to traditional PD, working with one focused and one defocused camera image, and the computational load is reduced by a factor of 20 compared to a more reliable PD algorithm requiring more camera images. In addition, we find that the system performance can be optimized by adjusting the magnitude of the applied diversity wavefronts.

© 2012 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(100.1830) Image processing : Deconvolution
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems

ToC Category:
Image Processing

Original Manuscript: July 11, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 22, 2011
Published: December 23, 2011

Visa Korkiakoski, Christoph U. Keller, Niek Doelman, Rufus Fraanje, and Michel Verhaegen, "Joint optimization of phase diversity and adaptive optics: demonstration of potential," Appl. Opt. 51, 102-113 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999).
  2. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982).
  3. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992). [CrossRef]
  4. M. G. Löfdahl and G. B. Scharmer, “Wavefront sensing and image restoration from focused and defocused solar images,” Astron. Astrophys. Suppl. Ser. 107, 243–264 (1994).
  5. R. G. Paxman, J. H. Seldin, M. G. Löfdahl, G. B. Scharmer, and C. U. Keller, “Evaluation of phase-diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099(1996). [CrossRef]
  6. M. G. Löfdahl, “Multi-frame blind deconvolution with linear equality constraints,” Proc. SPIE 4792, 146–155 (2002). [CrossRef]
  7. M. van Noort, L. R. van der Voort, and M. G. Löfdahl, “Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity,” Sol. Phys. 228, 191–215 (2005). [CrossRef]
  8. J. Sauvage, T. Fusco, G. Rousset, and C. Petit, “Calibration and precompensation of noncommon path aberrations for extreme adaptive optics,” J. Opt. Soc. Am. A 24, 2334–2346 (2007). [CrossRef]
  9. S. M. Jefferies, M. Lloyd-Hart, E. K. Hege, and J. Georges, “Sensing wave-front amplitude and phase with phase diversity,” Appl. Opt. 41, 2095–2102 (2002). [CrossRef]
  10. T. Berkefeld, “Solar adaptive optics,” in Modern Solar Facilities—Advanced Solar Science, F. Kneer, K. G. Puschmann, and A. D. Wittmann, eds. (Universitätsverlag Göttingen, 2007), pp. 107–113.
  11. F. J. Rigaut, B. L. Ellerbroek, and R. Flicker, “Principles, limitations, and performance of multiconjugate adaptive optics,” Proc. SPIE 4007, 1022–1031 (2000). [CrossRef]
  12. J.-P. Véran, F. Rigaut, H. Maître, and D. Rouan, “Estimation of the adaptive optics long-exposure point-spread function using control loop data,” J. Opt. Soc. Am. A 14, 3057–3069(1997). [CrossRef]
  13. C. U. Keller, T. R. Rimmele, R. G. Paxman, J. H. Seldin, D. Carrara, and K. Gleichman, “Evolution of small-scale magnetic fields from combined adaptive optics and phase-diverse speckle imaging,” in AAS/Solar Physics Division Meeting #31, vol. 32 of Bulletin of the American Astronomical Society (American Astronomical Society, 2000), p. 833.
  14. M. G. Löfdahl and G. B. Scharmer, “Phase diverse speckle inversion applied to data from the Swedish 1-meter solar telescope,” Proc. SPIE 4853, 567–575 (2003). [CrossRef]
  15. K. G. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astron. Astrophys. 454, 1011–1019 (2006). [CrossRef]
  16. J. H. Seldin, R. G. Paxman, D. A. Carrara, C. U. Keller, and T. R. Rimmele, “Deconvolution of narrowband solar images using aberrations estimated from phase-diverse imagery,” Proc. SPIE 3815, 155–163 (1999). [CrossRef]
  17. A. Blanc, T. Fusco, M. Hartung, L. M. Mugnier, and G. Rousset, “Calibration of NAOS and CONICA static aberrations. Application of the phase diversity technique,” Astron. Astrophys. 399, 373–383 (2003). [CrossRef]
  18. R. A. Gonsalves, “Adaptive optics by sequential diversity imaging,” in Beyond Conventional Optics, E. Vernet, R. Ragazzoni, S. Esposito, and N. Hubin, eds. (European Southern Observatory, 2002), Vol. 58, pp. 121–124.
  19. R. A. Gonsalves, “Sequential diversity imaging: phase diversity with AO changes as the diversities,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2010) p. FWV1.
  20. A. W. van Eekeren, K. Schutte, J. Dijk, and P. B. Schwering, “Time-varying phase diversity turbulence compensation,” Proc. SPIE 8012, 80120D (2011). [CrossRef]
  21. F. Roddier, “Theoretical aspects,” in Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge University, 1999), pp. 25–56.
  22. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 66, 207–211 (1976). [CrossRef]
  23. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990). [CrossRef]
  24. E. V. Khomenko, S. Shelyag, S. K. Solanki, and A. Vögler, “Stokes diagnostics of simulations of magnetoconvection of mixed-polarity quiet-Sun regions,” Astron. Astrophys. 442, 1059–1078 (2005). [CrossRef]
  25. V. Korkiakoski, C. Vérinaud, and M. Le Louarn, “Improving the performance of a pyramid wavefront sensor with modal sensitivity compensation,” Appl. Opt. 47, 79–87 (2008). [CrossRef]
  26. M. W. Smith, “Use of adaptive optics to implement nonquadratic phase diversity imaging,” Proc. SPIE 5524, 66–77 (2004). [CrossRef]
  27. D. J. Lee, M. C. Roggemann, and B. M. Welsh, “Cramér–Rao analysis of phase-diverse wave-front sensing,” J. Opt. Soc. Am. A 16, 1005–1015 (1999). [CrossRef]
  28. L. Meynadier, V. Michau, M.-T. Velluet, J.-M. Conan, L. M. Mugnier, and G. Rousset, “Noise propagation in wave-front sensing with phase diversity,” Appl. Opt. 38, 4967–4979 (1999). [CrossRef]
  29. J. J. Dolne, R. J. Tansey, K. A. Black, J. H. Deville, P. R. Cunningham, K. C. Widen, and P. S. Idell, “Practical issues in wave-front sensing by use of phase diversity,” Appl. Opt. 42, 5284–5289 (2003). [CrossRef]
  30. M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, and L. Fini, “Modelling astronomical adaptive optics—I. The software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263–1275 (2005). [CrossRef]
  31. G. B. Scharmer, M. G. Löfdahl, T. I. M. van Werkhoven, and J. de la Cruz Rodríguez, “High-order aberration compensation with multi-frame blind deconvolution and phase diversity image restoration techniques,” Astron. Astrophys. 521, A68 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited