OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 1 — Jan. 1, 2012
  • pp: 21–26

All-optical flip-flop based on nonlinear effects in fiber Bragg gratings

Mohammad Karimi, Majid Lafouti, Ali Asghar Amidiyan, and Jamshid Sabbaghzadeh  »View Author Affiliations

Applied Optics, Vol. 51, Issue 1, pp. 21-26 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel design for a passive all-optical R-S flip-flop with separate set-rest ports based on nonlinearity in the fiber Bragg gratings (FBGs). The spectrum of FBGs in the presence of the Kerr effect is investigated, and cw and transient characteristics of nonlinear-induced bistability of the passive distributed feedback structures are studied by numerical solving of coupled-mode equations. It is shown that a pulse with a pulsewidth of 0.15 ns can switch the state of the flip-flop.

© 2012 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(230.1150) Optical devices : All-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Optical Devices

Original Manuscript: June 27, 2011
Revised Manuscript: August 30, 2011
Manuscript Accepted: September 16, 2011
Published: December 22, 2011

Mohammad Karimi, Majid Lafouti, Ali Asghar Amidiyan, and Jamshid Sabbaghzadeh, "All-optical flip-flop based on nonlinear effects in fiber Bragg gratings," Appl. Opt. 51, 21-26 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996). [CrossRef]
  2. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  3. H. Lee and G. P. Agrawal, “Nonlinear switching of optical pulses in fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 508–515 (2003). [CrossRef]
  4. N. G. R. Broderick, D. Taverner, and D. J. Richardson, “Nonlinear switching in fiber Bragg gratings,” Opt. Express 3, 447–453 (1998). [CrossRef]
  5. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000). [CrossRef]
  6. D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming, “All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 259–261 (1998). [CrossRef]
  7. L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron. 36, 550–555 (2000). [CrossRef]
  8. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997). [CrossRef]
  9. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef]
  10. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Bragg solitons in the nonlinear Schrödinger limit: experiment and theory,” J. Opt. Soc. Am. B 16, 587–599 (1999). [CrossRef]
  11. C. M. de Sterke, B. J. Eggleton, and P. A. Krug, “High-intensity pulse propagation in uniform gratings and grating superstructures,” J. Lightwave Technol. 15, 1494–1502 (1997). [CrossRef]
  12. C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996). [CrossRef]
  13. G. Lifante, Integrated Photonics (Wiley, 2003).
  14. G. P. Agrawal, Applications of Nonlinear Fiber Optics(Academic, 2001).
  15. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic, 2006).
  16. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  17. C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–412 (1991). [CrossRef]
  18. A. R. Bahrampour, M. Karimi, M. J. A. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008). [CrossRef]
  19. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photon. 5, 141–148(2011). [CrossRef]
  20. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007). [CrossRef]
  21. L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131 (2007). [CrossRef]
  22. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996). [CrossRef]
  23. D. Pudo, E. C. Mägi, and B. J. Eggleton, “Long-period gratings in chalcogenide fibers,” Opt. Express 14, 3763–3766(2006). [CrossRef]
  24. I. V. Kabakova, D. Grobnic, S. Mihailov, E. C. Mägi, C. Martijn de Sterke, and B. J. Eggleton, “Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity,” Opt. Express 19, 5868–5873 (2011). [CrossRef]
  25. K. Nakatsuhara, T. Mizumoto, S. Hossain, S. Jeong, Y. Tsukishima, B. Ma, and Y. Nakano, “GaInAsP—InP distributed feedback waveguides for all-optical switching,” IEEE J. Sel. Top. Quantum Electron. 6, 143–149 (2000). [CrossRef]
  26. P. Millar, R. M. De La Rue, T. F. Krauss, and J. S. Aitchison, “Nonlinear propagation effects in an AlGaAs Bragg grating filter,” Opt. Lett. 24, 685–687 (1999). [CrossRef]
  27. I. V. Kabakova, C. Martijn de Sterke, and B. J. Eggleton, “Bistable switching and reshaping of optical pulses in a Bragg grating cavity,” J. Opt. Soc. Am. B 27, 2648–2653 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited