OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 1 — Jan. 1, 2012
  • pp: 64–74

Ultraslim fixed pattern projectors with inherent homogenization of illumination

Marcel Sieler, Peter Schreiber, Peter Dannberg, Andreas Bräuer, and Andreas Tünnermann  »View Author Affiliations

Applied Optics, Vol. 51, Issue 1, pp. 64-74 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3047 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For a given illumination source brightness, the transmitted flux of common single-aperture projection optics scales with all three system dimensions, thus preventing the realization of slim devices along with a high lumen output. In this article we introduce a multichannel approach, called “array projector,” which breaks this constraint, thus enabling the realization of ultraslim but high flux systems with inherent homogenization for still image content. The concept is based on regular two-dimensional arrangements of absorbing object structures and projective microlenses superposing their individual images on the screen. After deriving first-order scaling laws for the multichannel projector in contrast to common single-aperture optics, specification of system parameters is shown considering aberrations of a single-channel and collective effects of the array. The technological realization of a sample system is shown and characterized in terms of modulation transfer, homogeneity, depth of focus and flux.

© 2012 Optical Society of America

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(120.2040) Instrumentation, measurement, and metrology : Displays
(220.3620) Optical design and fabrication : Lens system design
(230.3990) Optical devices : Micro-optical devices
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 17, 2011
Revised Manuscript: September 9, 2011
Manuscript Accepted: September 12, 2011
Published: December 22, 2011

Marcel Sieler, Peter Schreiber, Peter Dannberg, Andreas Bräuer, and Andreas Tünnermann, "Ultraslim fixed pattern projectors with inherent homogenization of illumination," Appl. Opt. 51, 64-74 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2007).
  2. F. Fournier and J. Rolland, “Design methodology for high brightness projectors,” J. Disp. Technol. 4, 86–91 (2008). [CrossRef]
  3. E. Geissler, “Meeting the challenges of developing LED-based projection display,” Proc. SPIE 6196, 616901–616912 (2007).
  4. J. W. Pan, S. H. Tu, C. M. Wang, and J. Y. Chang, “High efficiency pocket-size projector with a compact projection lens and a light emitting diode-based light source system,” Appl. Opt. 47, 3406–3414 (2008). [CrossRef]
  5. Duparre P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005). [CrossRef]
  6. A. Brückner, J. Duparré, P. Dannberg, R. Leitel, and A. Bräuer, “Driving micro-optical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J-1–77160J-11 (2010).
  7. M. Sieler, P. Schreiber, P. Dannberg, and A. Bräuer, “Array projection optics: multi-channel design for ultra slim projectors,” Proc. SPIE 7716, 77161A-1–77161A-10 (2010).
  8. G. Lippmann, “E´prevuves re´versibles. Photographie inte´grales,” Comptes Rendus de l’Acade´mie des Sciences 146, 446–451 (1908).
  9. D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005). [CrossRef]
  10. P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K-1–59420K-9 (2005).
  11. H. Kamal, R. Völkel, and J. Alda, “Properties of moiré magnifiers,” Opt. Eng. 37, 3007 (1998). [CrossRef]
  12. V. Mahajan, Aberration Theory Made Simple (SPIE Optical Engineering, 1991).
  13. V. Mahajan, Optical Imaging and Aberrations. Part 1 (SPIE Optical Engineering, 1998).
  14. F. Barrière, G. Druart, N. Guèrineau, and J. Taboury, “Design strategies to simplify and miniaturize imaging systems,” Appl. Opt. 50, 943–951 (2011). [CrossRef]
  15. H. Gross, Handbook of Optical Systems. Part 3 (Wiley-VCH, 2005).
  16. U. D. Zeitner and E.-B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009-1–629009–8 (2006).
  17. Z. D. Popovich, R. A. Sprague, and G. A. N. Conell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988). [CrossRef]
  18. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). [CrossRef]
  19. P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E integration,” Proc. SPIE 4179, 137–145 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited