OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 1 — Jan. 1, 2012
  • pp: 8–14

Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques

Claudia Pacholski, Christoph Morhard, Joachim P. Spatz, Dennis Lehr, Marcel Schulze, Ernst-Bernhard Kley, Andreas Tünnermann, Michael Helgert, Michael Sundermann, and Robert Brunner  »View Author Affiliations


Applied Optics, Vol. 51, Issue 1, pp. 8-14 (2012)
http://dx.doi.org/10.1364/AO.51.000008


View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Antireflective subwavelength structures (ARS) resembling nanostructures found on the cornea of night-active insects reduce the reflection of light by providing a gradual change in the refractive index at the interface. These artificial ARS have mainly been fabricated by a combination of conventional lithography and reactive ion etching, which constrains their application to planar substrates. We report on the fabrication of ARS using three different techniques including bottom-up and top-down methods as well as their combination on microlens arrays (MLAs) made of fused silica. The optical performance of the resulting ARS on the MLAs is as good as ARS fabricated on planar substrates with increased transmission of up to 96% at certain wavelengths.

© 2012 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(220.3740) Optical design and fabrication : Lithography
(240.6700) Optics at surfaces : Surfaces
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

History
Original Manuscript: August 11, 2011
Revised Manuscript: October 16, 2011
Manuscript Accepted: October 31, 2011
Published: December 22, 2011

Citation
Claudia Pacholski, Christoph Morhard, Joachim P. Spatz, Dennis Lehr, Marcel Schulze, Ernst-Bernhard Kley, Andreas Tünnermann, Michael Helgert, Michael Sundermann, and Robert Brunner, "Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques," Appl. Opt. 51, 8-14 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-1-8


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32, 2582–2598 (1993). [CrossRef]
  2. R. C. Enger and S. K. Case, “Optical-elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983). [CrossRef]
  3. M. J. Minot, “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 μ,” J. Opt. Soc. Am. 66, 515–519 (1976). [CrossRef]
  4. T. K. Gaylord, “Zero-reflectivity homogeneous layers and high spatial-frequency surface-relief gratings on lossy materials,” Appl. Opt. 26, 3123–3135 (1987). [CrossRef]
  5. W. Stork, N. Streibl, H. Haidner, and P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16, 1921–1923 (1991). [CrossRef]
  6. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ ,” Nature 244, 281–282 (1973). [CrossRef]
  7. A. R. Parker, “515 million years of structural colour,” J. Opt. A 2, R15–R28 (2000). [CrossRef]
  8. http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2861 .
  9. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999). [CrossRef]
  10. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31, 4371–4376 (1992). [CrossRef]
  11. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998). [CrossRef]
  12. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001). [CrossRef]
  13. M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008). [CrossRef]
  14. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008). [CrossRef]
  15. C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010). [CrossRef]
  16. F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications (CRC Press, 2006).
  17. M. Burkhardt and R. Brunner, “Functional integrated optical elements for beam shaping with coherence scrambling property, realized by interference lithography,” Appl. Opt. 46, 7061–7067 (2007). [CrossRef]
  18. P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010). [CrossRef]
  19. Y. F. Li, J. H. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010). [CrossRef]
  20. L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Microlith. Microfab. Microsyst. 4, 041601 (2005). [CrossRef]
  21. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15, 13108–13113 (2007). [CrossRef]
  22. R. Glass, M. Moller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003). [CrossRef]
  23. S. A. Gupta and R. K. Gupta, “A parametric study of spin coating over topography,” Ind. Eng. Chem. Res. 37, 2223–2227 (1998). [CrossRef]
  24. K. Cooper, C. Hamel, and B. Whitney, “Conformal photoresist coatings for high aspect ratio features,” in Proceedings of the IWLPC International Wafer-Level Packaging Conference (SMTA, 2007).
  25. S. Kalliadasis, C. Bielarz, and G. M. Homsy, “Steady free-surface thin film flows over topography,” Phys. Fluids 12, 1889–1898 (2000). [CrossRef]
  26. M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited