OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: 1459–1467

Passive long-range surface plasmon-polariton devices in Cytop

Hui Fan, Robin Buckley, and Pierre Berini  »View Author Affiliations


Applied Optics, Vol. 51, Issue 10, pp. 1459-1467 (2012)
http://dx.doi.org/10.1364/AO.51.001459


View Full Text Article

Enhanced HTML    Acrobat PDF (1037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Passive elements operating with long-range surface plasmon polaritons and constructed as Au stripes embedded in Cytop were investigated theoretically and experimentally at wavelengths near 1310 nm. The elements investigated consist of straight waveguides, S-bends, Y-junctions, couplers, and Mach–Zehnder interferometers. The measured performance of these devices is close to theoretical expectations, although uniformity issues were noted, likely because of fabrication imperfections. Cytop is a low-index polymer suitable for biosensing applications involving aqueous buffers. The elements demonstrated thus could form the basis of integrated biosensing devices operating with long-range surface plasmons.

© 2012 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

History
Original Manuscript: November 28, 2011
Manuscript Accepted: December 19, 2011
Published: March 23, 2012

Citation
Hui Fan, Robin Buckley, and Pierre Berini, "Passive long-range surface plasmon-polariton devices in Cytop," Appl. Opt. 51, 1459-1467 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-10-1459


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009). [CrossRef]
  3. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006). [CrossRef]
  4. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000). [CrossRef]
  5. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005). [CrossRef]
  6. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005). [CrossRef]
  7. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477– 494 (2006). [CrossRef]
  8. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006). [CrossRef]
  9. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006). [CrossRef]
  10. A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009). [CrossRef]
  11. R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003). [CrossRef]
  12. A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008). [CrossRef]
  13. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19, 1374–1376 (2007). [CrossRef]
  14. J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008). [CrossRef]
  15. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005). [CrossRef]
  16. R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94, 091114 (2009). [CrossRef]
  17. R. Daviau, A. Khan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87, 1914–1921 (2010). [CrossRef]
  18. C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729– 735 (2010). [CrossRef]
  19. Asahi Glass Company, Cytop technical brochure, http://www.agc.com.
  20. Dupont, Teflon AF Properties, http://www.dupont.com.
  21. A. W. Wark, H. J. Lee, and R. M. Corn, “ Long range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904– 3907 (2005). [CrossRef]
  22. A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006). [CrossRef]
  23. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007). [CrossRef]
  24. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007). [CrossRef]
  25. Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961 (2000). [CrossRef]
  26. Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd. 56, 35–38 (2006).
  27. B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010). [CrossRef]
  28. Y. Matsumoto, K. Yoshida, and M. Ishida, “A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices,” Sens. Actuators A 66, 308–314 (1998). [CrossRef]
  29. N. Fong, P. Berini, and R. N. Tait, “Fabrication of surface plasmon waveguides on thin CYTOP membranes,” J. Vac. Sci. Technol. A 27, 614– 619 (2009). [CrossRef]
  30. C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005). [CrossRef]
  31. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008). [CrossRef]
  32. P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14, 2365–2371 (2006). [CrossRef]
  33. P. Berini and R. Buckley, “On the convergence and accuracy of numerical mode computations of surface plasmon waveguides,” J. Comp. Theo. Nanosci. 6, 2040–2053 (2009).
  34. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited