OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: 1468–1478

Spectral LADAR: active range-resolved three-dimensional imaging spectroscopy

Michael A. Powers and Christopher C. Davis  »View Author Affiliations


Applied Optics, Vol. 51, Issue 10, pp. 1468-1478 (2012)
http://dx.doi.org/10.1364/AO.51.001468


View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the concept and experimental results for Spectral LADAR, an augmented LADAR imager combining three-dimensional (3D) time-of-flight ranging with active multispectral sensing in the shortwave infrared (1080–1620 nm). The demonstrated technique is based on a nanosecond regime pulsed supercontinuum transmitter and spectrally multiplexed receiver that computes a high-resolution range value for each of 25 spectral bands. A low frame-rate prototype unit is described. Results demonstrating 3D imaging and material type classification of objects, especially those obscured by camouflage, are shown at effective stand-off ranges exceeding 40 m. These capabilities and the highly eye safe wavelengths at which the system operates make it suitable for applications in military imaging and robotic perception.

© 2012 Optical Society of America

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(150.6910) Machine vision : Three-dimensional sensing
(280.3640) Remote sensing and sensors : Lidar
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(150.5758) Machine vision : Robotic and machine control

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: September 26, 2011
Revised Manuscript: January 3, 2012
Manuscript Accepted: January 4, 2012
Published: March 23, 2012

Citation
Michael A. Powers and Christopher C. Davis, "Spectral LADAR: active range-resolved three-dimensional imaging spectroscopy," Appl. Opt. 51, 1468-1478 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-10-1468


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurants,” Appl. Opt. 41, 2791–2799 (2002). [CrossRef]
  2. C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996). [CrossRef]
  3. J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain classification using three-dimensional ladar data for ground robot mobility,” J. Field Robot. 23, 839–861 (2006). [CrossRef]
  4. A. L. Rankin, A. Huertas, and L. H. Matthies, “Stereo vision based terrain mapping for off-road autonomous navigation,” Proc. SPIE 7332, 733210 (2009).
  5. M. Hebert, “Active and passive range sensing for robotics,” in Proceedings of the 2000 IEEE International Conference on Robotics and Automation (IEEE, 2000), pp. 102–110.
  6. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998). [CrossRef]
  7. K. Burton, J. Jeong, S. Wachsmann-Hogiu, and D. L. Farkas, “Spectral optical imaging in biology and medicine,” in Biomedial Optical Imaging, J. G. Fujimoto and D. L. Farkas, eds. (Oxford, 2009), pp. 29–72.
  8. I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011). [CrossRef]
  9. R. Anderson, W. Malila, R. Maxwell, and L. Reed, Military Utility of Multispectral and Hyperspectral Sensors (Environmental Research Institute of Michigan, 1997).
  10. L. Bokobza, “Origin of near-infrared absorption bands,” in Near Infrared Spectroscopy: Principles, Instruments, Applications, H. W. Seisler, ed. (Wiley-VCH, 2002), pp. 12–16.
  11. E. W. Ciurczak, “Principles of near-infrared spectroscopy,” in Handbook of Near-Infrared Analysis, 2nd ed., D. A. Burns and E. W. Ciurczak, eds. (Dekker, 2001), pp. 7–19.
  12. M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).
  13. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610–1618 (2009). [CrossRef]
  14. J. F. Andersen, J. Busck, and H. Heiselberg, “Pulsed Raman fiber laser and multispectral imaging in three dimensions,” Appl. Opt. 45, 6198–6204 (2006). [CrossRef]
  15. B. R. Foy, B. D. McVey, R. R. Petrin, J. J. Tiee, and C. W. Wilson, “Remote mapping of vegetation and geological features by LIDAR in the 9–11 µm region,” Appl. Opt. 40, 4344–4352 (2001). [CrossRef]
  16. M. Vaidyanathan, T. P. Grayson, R. C. Hardie, L. E. Myers, and P. F. McManamon, “Multispectral Laser radar development and target characterization,” Proc. SPIE 3065, 255–266(1997). [CrossRef]
  17. R. C. Hardie, M. Vaidyanathan, and P. F. McManamon, “Spectral band selection and classifier design for a multispectral imaging laser radar,” Opt. Eng. 37, 752–762 (1998). [CrossRef]
  18. A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple-slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001). [CrossRef]
  19. A. M. Wallace, G. S. Buller, R. C. W. Sung, R. D. Harkins, A. McCarthy, S. Hernandez-Marin, G. J. Gibson, and R. Lamb, “Multi-spectral laser detection and ranging for range profiling and surface characterization,” J. Opt. A 7, S438–S444 (2005). [CrossRef]
  20. Y. Wang, Y. Wang, and H. Q. Le, “Multi-spectral mid-infrared laser stand-off imaging,” Opt. Express 13, 6572–6586(2005). [CrossRef]
  21. B. A. Kinder, J. P. Garcia, R. D. Habbit, and E. L. Dereniak, “Ranging-imaging spectrometer,” Proc. SPIE 5159, 73–81 (2003). [CrossRef]
  22. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  23. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004). [CrossRef]
  24. J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004). [CrossRef]
  25. J. Busck, and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43, 4705–4710 (2004). [CrossRef]
  26. C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976). [CrossRef]
  27. Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express 18, 22762–22771 (2010). [CrossRef]
  28. K.-S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010). [CrossRef]
  29. M. A. Powers and C. C. Davis, “Spectral LADAR as a UGV navigation sensor,” Proc. SPIE 8037, 80371F (2011). [CrossRef]
  30. R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 3rd ed. (Academic, 2007).
  31. J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 4th ed. (Springer, 2006).
  32. M. I. Skolnik, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited