OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: 1495–1502

Effect of nanosecond laser pre-irradiation on the femtosecond laser-induced damage of Ta2O5/SiO2 high reflector

Shunli Chen, Yuan’an Zhao, Dawei Li, Hongbo He, and Jianda Shao  »View Author Affiliations

Applied Optics, Vol. 51, Issue 10, pp. 1495-1502 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of nanosecond laser pre-irradiation on the femtosecond laser-induced damage behaviors of 800 nm 0° AOI Ta2O5/SiO2 high reflectors fabricated by e-beam evaporation was explored. Laser pre-irradiation was carried out by Raster-scanning with scanning mode of 1-on-1 and scanning velocities timed such that there was a beam overlap at 70% of the peak fluence, utilizing 5 Hz 1064 nm 12 ns Nd:YAG fundamental lasers. Femtosecond laser damage was investigated by 1 kHz 800 nm 135 fs Ti: sapphire laser system with 1-on-1 mode test. The results indicated that nanosecond laser pre-irradiation did not promote the femtosecond laser-induced damage threshold of reflectors. Instead, the thresholds of all the samples with various fluence steps for pre-irradiation were reduced by about 20%. Furthermore, the damage morphologies were analyzed by optical microscope, SEM and AFM, which displayed deterministic field induced breakdown characteristics. To explain these phenomena, a theoretical model including photoionization, avalanche ionization, and decays of electrons was built to simulate the evolution of electron density in the conduction band. Field ionization mechanism was considered to dominate the femtosecond laser damage process, while the electronic defects induced by nanosecond laser pre-irradiation accelerated the femtosecond laser damage evolution.

© 2012 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(230.4170) Optical devices : Multilayers
(310.0310) Thin films : Thin films
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.4240) Ultrafast optics : Nanosecond phenomena

ToC Category:
Thin Films

Original Manuscript: September 23, 2011
Revised Manuscript: November 22, 2011
Manuscript Accepted: November 22, 2011
Published: March 28, 2012

Shunli Chen, Yuan’an Zhao, Dawei Li, Hongbo He, and Jianda Shao, "Effect of nanosecond laser pre-irradiation on the femtosecond laser-induced damage of Ta2O5/SiO2high reflector," Appl. Opt. 51, 1495-1502 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987). [CrossRef]
  2. S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416–418 (1982). [CrossRef]
  3. J. W. Arenberg and M. E. Frink, “On the role of water in the laser conditioning effect,” Proc. SPIE 756, 430–439 (1988).
  4. A. B. Papendrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
  5. C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales,“Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1989).
  6. Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).
  7. Y. Zhao, T. Wang, D. Zhang, S. Fan, J. Shao, and Z. Fan, “Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,” Appl. Surf. Sci. 239, 171–175 (2005). [CrossRef]
  8. W. T. Beauchamp, B. P. Hichawa, and M. H. Innus, “Systematic design approach leads to better optical coatings,” Laser Focus/Electra-Optics 24, 109–112 (1988).
  9. R. N. Schwartz, M. D. Gark, W. Thamulitrat, and L. Kevan, “Electron paramagnetic resonance studies of intrinsic bonding defects and impurities in SiO2 thin solid films,” Mater. Res. Soc. Symp. Proc. 61, 359 (1986).
  10. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
  11. L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2−SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007). [CrossRef]
  12. X. Jing, J. Shao, J. Zhang, Y. Jin, H. He, and Z. Fan, “Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays,” Opt. Express 17, 24137–24152 (2009). [CrossRef]
  13. M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209 (2008).
  14. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010). [CrossRef]
  15. Y. Wang, H. He, Y. Zhao, Y. Shan, D. Li, and C. Wei, “Single- and multi-shot laser-induced damage of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9, 023013 (2011).
  16. ISO 11254-1, Laser and laser-related equipment-determination of laser-induced damage threshold of optical surfaces-Part 1: 1-on-1 test, (2000).
  17. L. M. Sheehan, M. R. Kozlowski, F. Rainer, and M. C. Staggs, “Large area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).
  18. S. Chen, Y. Zhao, P. Gao, D. Li, H. He, J. Shao, and Z. Fan, “Influence of nanosecond laser surface modification on the femtosecond laser-induced damage of Ta2O5/SiO2 dielectric film,” Chin. J. Lasers 38, s103002 (2011).
  19. S. Chen, Y. Zhao, H. He, and J. Shao, “Effect of standing wave-field distribution on the femtosecond laser-induced damage of HfO2/SiO2 mirror coating,” Chin. Opt. Lett. 9, 083101 (2011). [CrossRef]
  20. J. M. Liu, “Sample technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982). [CrossRef]
  21. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon—modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002). [CrossRef]
  22. L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010). [CrossRef]
  23. K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
  24. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002). [CrossRef]
  25. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
  26. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009). [CrossRef]
  27. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  28. A. C. Tien, S. Backus, H. Kapteyn, M. Murmane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999). [CrossRef]
  29. M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited