OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: 1521–1531

Angle-resolved reflectance of obliquely aligned silver nanorods

X. J. Wang, J. L. Abell, Y.-P. Zhao, and Z. M. Zhang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 10, pp. 1521-1531 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Arrays of silver nanorods (AgNRs) formed by oblique-angle deposition (OAD) are strongly anisotropic, with either metallic or dielectric characteristics depending on the polarization of incident light, and may be used to enhance Raman scattering and surface plasmon polaritons. This work investigates the polarization-dependent reflectance of inclined AgNR arrays at the wavelengths of 635 and 977 nm. The specular reflectance at various incidence angles and the bidirectional reflectance distribution function were measured with a laser scatterometer, while the directional-hemispherical reflectance was measured with an integrating sphere. The AgNR layer is modeled as an effectively homogenous, optically uniaxial material using the effective medium theory to elucidate the dielectric or metallic response for differently polarized incidence. The thin-film optics formulation is modified considering optical anisotropy and surface scattering. This study helps gain a better understanding of optical properties of nanostructured materials.

© 2012 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(160.1190) Materials : Anisotropic optical materials
(160.4760) Materials : Optical properties
(240.5770) Optics at surfaces : Roughness
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

Original Manuscript: September 14, 2011
Revised Manuscript: November 28, 2011
Manuscript Accepted: December 14, 2011
Published: March 28, 2012

X. J. Wang, J. L. Abell, Y.-P. Zhao, and Z. M. Zhang, "Angle-resolved reflectance of obliquely aligned silver nanorods," Appl. Opt. 51, 1521-1531 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008). [CrossRef]
  2. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.,” J. Phys. Chem. B 110, 19220–19225 (2006). [CrossRef]
  3. S. Shanmukh, L. Jones, Y.-P. Zhao, R. A. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630–2636 (2006). [CrossRef]
  4. S. Y. Chu, Y. W. Huang, and Y.-P. Zhao, “Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection,” Appl. Spectrosc. 62, 922–931 (2008). [CrossRef]
  5. A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005). [CrossRef]
  6. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007). [CrossRef]
  7. P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008). [CrossRef]
  8. J. Yao, K.-T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y.-L. Wang, and X. Zhang, “Imaging visible light using anisotropic metamaterial slab lens,” Opt. Express 17, 22380–22385 (2009). [CrossRef]
  9. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010). [CrossRef]
  10. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. Pure Appl. Opt. 7, S32–S37 (2005). [CrossRef]
  11. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006). [CrossRef]
  12. A. Fang, T. Koschny, and C. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009). [CrossRef]
  13. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008). [CrossRef]
  14. J. X. Fu, B. Park, and Y. P. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48, 4637–4649 (2009). [CrossRef]
  15. G. B. Smith, “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Opt. Commun. 71, 279–284 (1989). [CrossRef]
  16. G. B. Smith, “Theory of angular selective transmittance in oblique columnar thin films containing metal and voids,” Appl. Opt. 29, 3685–3693 (1990). [CrossRef]
  17. A. Mendoza-Galván, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Physica A 207, 365–371 (1994). [CrossRef]
  18. A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985). [CrossRef]
  19. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999). [CrossRef]
  20. Y. J. Jen, A. Lakhtakia, C. W. Yu, and C. T. Lin, “Vapor-deposited thin films with negative real refractive index in the visible regime,” Opt. Express 17, 7784–7789 (2009). [CrossRef]
  21. Y. J. Jen, C. H. Chen, and C. W. Yu, “Deposited metamaterial thin film with negative refractive index and permeability in the visible regime,” Opt. Lett. 36, 1014–1016 (2011). [CrossRef]
  22. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003). [CrossRef]
  23. M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E 73, 1–10 (2006). [CrossRef]
  24. C. Amra, C. Grezes-Besset, and L. Bruel, “Comparison of surface and bulk scattering in optical multilayers,” Appl. Opt. 32, 5492–5503 (1993). [CrossRef]
  25. Y. P. Zhao, G. C. Wang, and T. M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (Academic Press, 2001).
  26. S. Kassam, I. J. Hodgkinson, Q. H. Wu, and S. C. Cloughley, “Light scattering from thin films with an oblique columnar structure and with granular inclusions,” J. Opt. Soc. Am. A 12, 2009–2021 (1995). [CrossRef]
  27. X. J. Wang, A. M. Haider, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Anisotropic diffraction from inclined silver nanorod arrays on grating templates,” Nanoscale Microscale Thermophys. Eng. 16, 18–36 (2011).
  28. S. B. Chaney, S. Shanmukh, Y.-P. Zhao, and R. A. Dluhy, “Aligned silver nanorod array produced high sensitive surface-enhanced Raman substrates,” Appl. Phys. Lett. 87, 031908 (2005). [CrossRef]
  29. Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2006). [CrossRef]
  30. Y.-J. Liu and Y.-P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, 075436 (2008). [CrossRef]
  31. Y.-J. Liu, H. Y. Chu, and Y.-P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010). [CrossRef]
  32. M. Bloemer, T. Ferrell, M. Buncick, and R. Warmack, “Optical properties of submicrometer-size silver needles,” Phys. Rev. B 37, 8015–8021 (1988). [CrossRef]
  33. L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997). [CrossRef]
  34. Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885–4892 (2003). [CrossRef]
  35. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  36. L. M. Hanssen and K. A. Snail, “Integrating spheres for mid-and near-infrared reflection spectroscopy,” in Handbook of Vibrational SpectroscopyJ. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), Vol. 2, pp. 1175–1192.
  37. Q. H. Li, B. J. Lee, Z. M. Zhang, and D. W. Allen, “Light scattering of semitransparent sintered polytetrafluoroethylene films,” J. Biomed. Opt. 13, 054064 (2008). [CrossRef]
  38. Y. J. Shen, Z. M. Zhang, B. K. Tsai, and D. P. DeWitt, “Bidirectional reflectance distribution function of rough silicon wafers,” Int. J. Thermophys. 22, 1311–1326(2001). [CrossRef]
  39. X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97, 163116 (2010). [CrossRef]
  40. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  41. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  42. D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21, 3290–3299(1980). [CrossRef]
  43. G. L. Carr, S. Perkowitz, and D. B. Tanner, “Far-infrared properties of inhomogeneous materials,” in Infrared and Millimeter Waves, W. J. Button, ed. (Academic, 1985), Vol. 13, pp. 171–263.
  44. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited