OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: 1540–1545

Electrical control of shape of laser beam using axially symmetric liquid crystal cells

Shih-Wei Ko, Tsung-Hsien Lin, Yao-Han Huang, Hung-Chang Jau, Shu-Chun Chu, Yan-Yu Chen, and Andy Y.-G. Fuh  »View Author Affiliations

Applied Optics, Vol. 51, Issue 10, pp. 1540-1545 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work demonstrates the electrical tuning of laser beam shape using an axially symmetric dye-dope liquid crystal (ASDDLC) device that is fabricated using a photo-alignment method. Various beam shapes can be obtained by linearly polarized Gaussian laser beams through an ASDDLC device under various applied voltages. The far-field intensity patterns generated by laser beams of selected shapes under various applied voltages are simulated, and the results are consistent with experiment. A rotatable petal-shaped beam is obtained by controlling the polarization of the output donut-shaped beam. The tenability of beam shape of light with a wavelength of 1064 nm, which is commonly used in biomedical applications, is also demonstrated.

© 2012 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(160.3710) Materials : Liquid crystals
(220.1140) Optical design and fabrication : Alignment

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 21, 2011
Revised Manuscript: December 23, 2011
Manuscript Accepted: December 30, 2011
Published: March 29, 2012

Shih-Wei Ko, Tsung-Hsien Lin, Yao-Han Huang, Hung-Chang Jau, Shu-Chun Chu, Yan-Yu Chen, and Andy Y.-G. Fuh, "Electrical control of shape of laser beam using axially symmetric liquid crystal cells," Appl. Opt. 51, 1540-1545 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003). [CrossRef]
  2. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989). [CrossRef]
  3. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008). [CrossRef]
  4. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005). [CrossRef]
  5. F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551–559 (2010). [CrossRef]
  6. K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993). [CrossRef]
  7. K. Vermeulen, J. van Mameren, G. Stienen, E. Peterman, G. Wuite, and C. Schmidt, “Calibrating bead displacements in optical tweezers using acousto-optic deflectors,” Rev. Sci. Instrum. 77, 013704 (2006). [CrossRef]
  8. B. K. Wilson, T. Mentele, S. Bachar, E. Knouf, A. Bendoraite, M. Tewari, S. H. Pun, and L. Y. Lin, “Nanostructure-enhanced laser tweezers for efficient trapping and alignment of particles,” Opt. Express 18, 16005–16013 (2010). [CrossRef]
  9. A. M. Blondin, E. McLeod, and C. B. Arnold, “Dynamic pulsed-beam shaping using a TAG lens in the near UV,” Appl. Phys. A 93, 231–234 (2008). [CrossRef]
  10. W. B. Veldkamp, “Laser beam profile shaping with interlaced binary diffraction gratings,” Appl. Opt. 21, 3209–3212 (1982). [CrossRef]
  11. B. Wattellier, C. Sauteret, J.-C. Chanteloup, and A. Migus, “Beam-focus shaping by use of programmable phase-only filters: application to an ultralong focal line,” Opt. Lett. 27, 213–215 (2002). [CrossRef]
  12. D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17, 1902–1918 (2009). [CrossRef]
  13. L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun. 281, 1217–1221 (2008). [CrossRef]
  14. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17, 11926–11934 (2009). [CrossRef]
  15. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996). [CrossRef]
  16. A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef]
  17. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000). [CrossRef]
  18. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801–5808 (2007). [CrossRef]
  19. C.-S. Guo, X. Liu, J.-L. He, and H.-T. Wang, “Optimal annulus structures of optical vortices,” Opt. Express 12, 4625–4634 (2004). [CrossRef]
  20. D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre-Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53, 547–556(2006). [CrossRef]
  21. D. Palima and J. Glückstad, “Gaussian to uniform intensity shaper based on generalized phase contrast,” Opt. Express 16, 1507–1516 (2008). [CrossRef]
  22. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11, 158–166 (2003). [CrossRef]
  23. F. K. Fatemi, M. Bashkansky, and Z. Dutton, “Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation,” Opt. Express 15, 3589–3596 (2007). [CrossRef]
  24. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597–602 (2002).
  25. S.-W. Ko, Y.-Y. Tzeng, C.-L. Ting, A. Y. -G. Fuh, and T.-H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express 16, 19643–19648 (2008). [CrossRef]
  26. C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y. -G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003). [CrossRef]
  27. S.-W. Ko, C.-L. Ting, A. Y. -G. Fuh, and T.-H. Lin, “Polarization converters based on axially symmetric twisted nematic liquid crystal,” Opt. Express 18, 3601–3607 (2010). [CrossRef]
  28. S.-C. Chu and K. Otsuka, “Doughnut-like beam generation of Laguerre-Gaussian mode with extremely high mode purity,” Opt. Commun. 281, 1647–1653 (2008). [CrossRef]
  29. A. Jesacher, S. Fürhapter, S. Bernet, and M. R. Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243–2250 (2004). [CrossRef]
  30. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, S. N. Khonina, O. Yu. Moiseev, and V. A. Soifer, “Simple optical vortices formed by a spiral phase plate,” J. Opt. Technol. 74, 49–58 (2007).
  31. “Technical Computing with MATLAB,” The MathWorks, Inc., 2012, http://www.mathworks.com/.
  32. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2004), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited