OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: 1572–1580

Evaluation of tracking ability of a phase conjugate mirror using a CCD array and spatial light modulator for optical energy transmission

Kotomi Kawakami, Shigeaki Uchida, and Hideki Okamura  »View Author Affiliations

Applied Optics, Vol. 51, Issue 10, pp. 1572-1580 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the tracking ability of an optical phase conjugator using a commercial CCD array and a projector LCD panel. This system allows one to use two separate laser oscillators for capturing interference patterns and generating phase conjugate light. Since a long coherence length is not required for the latter part, amplification of the phase conjugate light can be easily attained by using a laser oscillator for high-power applications such as machining. The wavelengths of the two laser oscillators can be independently chosen. For our experimental configuration an amplification factor of 7.8×104 is theoretically possible. Also, a formula for the maximum tracking range is derived. The proposed system is particularly suitable for power transmission by light.

© 2012 Optical Society of America

OCIS Codes
(070.5040) Fourier optics and signal processing : Phase conjugation
(090.1000) Holography : Aberration compensation
(190.2055) Nonlinear optics : Dynamic gratings
(090.5694) Holography : Real-time holography

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 26, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 13, 2012
Published: March 29, 2012

Kotomi Kawakami, Shigeaki Uchida, and Hideki Okamura, "Evaluation of tracking ability of a phase conjugate mirror using a CCD array and spatial light modulator for optical energy transmission," Appl. Opt. 51, 1572-1580 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. B. Markov and A. Khizhnyak, “Adaptive laser system for active remote object tracking,” in Aerospace Conference Proceedings (IEEE, 2002), Vol. 3, pp. 1445–1456.
  2. R. J. Grasso and E. A. Stappaerts, “Linear phase conjugation for atmospheric aberration compensation,” Proc. SPIE 3219, 124–132 (1998).
  3. H. Nakajima and R. Frey, “Intracavity nearly degenerate four-wave mixing in a (GaAl) as semiconductor laser,” Appl. Phys. Lett. 47, 769–771 (1985). [CrossRef]
  4. J. Sakai, Phase Conjugate Optics (McGraw-Hill, 1992).
  5. J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980). [CrossRef]
  6. A. Brignon and J.-P. Huignard, “Overview of phase conjugation,” in Phase Conjugate Laser OpticsA. Brignon and J.-P. Huignard, eds. (Wiley-Interscience, 2003), pp. 1–15.
  7. N. F. Andreev, V. I. Despalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” LETP Lett. 32, 625–629 (1980).
  8. O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, and M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).
  9. J. Reintjes, B. L. Wexler, N. Djeu, and J. L. Walsh, “Degenerate frequency mixing in saturable amplifiers,” J. Phys. Colloq. 44C2, 27–37 (1983).
  10. A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119, 171–177 (1995). [CrossRef]
  11. A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).
  12. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
  13. I. Yamaguchi, “Image formation and measurement of surface shape and deformation by phase-shifting digital holography,” Proc. SPIE 5642, 66–77 (2005).
  14. O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981). [CrossRef]
  15. E. Marom and U. Efron, “Phase conjugation of low-power optical beams using liquid-crystal light valves,” Opt. Lett. 12, 504–506 (1987). [CrossRef]
  16. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, “Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14, 8013–18 (2006).
  17. F. Bai and C. Rao, “Experimental validation of closed-loop adaptive optics based on a self-referencing interferometer wavefront sensor and a liquid-crystal spatial light modulator,” Opt. Commun. 283, 2782–2786 (2010). [CrossRef]
  18. T. Baumbach, W. Osten, C. V. Kopylow, and W. Jüptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006). [CrossRef]
  19. U. Schnars and W. Juptner, Digital Holograph : Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  20. N. Yin, L. Li, H. Wang, F. Guo, and W. Wang, “Experimental research of CCD/LCD in holography,” Proc. SPIE 6832, 68322B (2007).
  21. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736–738 (2006). [CrossRef]
  22. T. Kushida, Optical Physics (Kyoritsu Shuppan, 1983).
  23. H. Katsuma and K. Sato, “Electronic display system using LCD, laser diode, and holography camera,” Proc. SPIE 1914, 212–218 (1993). [CrossRef]
  24. S. Nakazaki, K. Sato, M. Morimoto, and K. Fujii, “Real-time color holography with high-resolution reflective LCD panels,” Proc. SPIE 5290, 50–57 (2004).
  25. Hamamatsu, “LCOS-SLM X10468 series Technical Information,” http://sales.hamamatsu.com/assets/pdf/parts_X/x10468_series_kacc9002e02.pdf .
  26. NASA homepage, “From gas-powered to laser-powered! NASA research team successfully flies first laser-powered aircraft,” http://www.nasa.gov/home/index.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited