OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: 1581–1585

Three-dimensional power splitter based on self-imaging effect in multimode layer-by-layer photonic crystal waveguides

Tianbao Yu, Nianhua Liu, Qinghua Liao, Dongying Zhang, and Jianyi Yang  »View Author Affiliations


Applied Optics, Vol. 51, Issue 10, pp. 1581-1585 (2012)
http://dx.doi.org/10.1364/AO.51.001581


View Full Text Article

Enhanced HTML    Acrobat PDF (607 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The self-imaging effect based on symmetrical interference in multimode layer-by-layer photonic crystal waveguides (PhCWs), is numerically studied with finite-difference time-domain simulations. With the properties of twofold images, a kind of three-dimensional (3D) PhCW-based power splitters with an ultracompact size using complete photonic bandgaps is proposed, calculated, and analyzed. The presented structure can be extended for the design of M×N power splitters for 3D photonic integrated circuits applications.

© 2012 Optical Society of America

OCIS Codes
(230.1360) Optical devices : Beam splitters
(230.7370) Optical devices : Waveguides
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: October 27, 2011
Revised Manuscript: January 5, 2012
Manuscript Accepted: January 5, 2012
Published: March 29, 2012

Citation
Tianbao Yu, Nianhua Liu, Qinghua Liao, Dongying Zhang, and Jianyi Yang, "Three-dimensional power splitter based on self-imaging effect in multimode layer-by-layer photonic crystal waveguides," Appl. Opt. 51, 1581-1585 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-10-1581


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  2. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer Academic, 2002).
  3. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994). [CrossRef]
  4. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000). [CrossRef]
  5. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000). [CrossRef]
  6. B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003). [CrossRef]
  7. H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee, “Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing,” Opt. Express 12, 5625–5633 (2004). [CrossRef]
  8. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22, 2842–2846 (2004). [CrossRef]
  9. T. Yu, H. Zhou, Z. Gong, J. Yang, X. Jiang, and M. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. D 41, 095101 (2008). [CrossRef]
  10. M. Zhang, R. Malureanu, A. C. Kruger, and M. Kristensen, “1×3 beam splitter for TE polarization based on self-imaging phenomenon in photonic crystal waveguides,” Opt. Express 18, 14944–14949 (2010). [CrossRef]
  11. Y. Zhang, Z. Li, and B. Li, “Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves,” Opt. Express 14, 2679–2689 (2006). [CrossRef]
  12. Z. Li, Y. Zhang, and B. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14, 3887–3892 (2006). [CrossRef]
  13. G. V. Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 2038–1052 (2010). [CrossRef]
  14. S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express 18, 386–392 (2010). [CrossRef]
  15. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009). [CrossRef]
  16. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009). [CrossRef]
  17. A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999). [CrossRef]
  18. Z.-Y. Li, and K.-M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B 20, 801–809 (2003). [CrossRef]
  19. S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, “Design of donor-type line-defect waveguides in three-dimensional photonic crystals,” Opt. Express 18, 386–392 (2010). [CrossRef]
  20. P. Kohli, C. Christensen, and J. Muehlmeier, “Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities,” Appl. Phys. Lett. 89, 231103 (2006). [CrossRef]
  21. R.-J. Liu, Z.-Y. Li, Z.-F. Feng, B.-Y. Cheng, and D.-Z. Zhang, “Channel-drop filters in three-dimensional woodpile photonic crystals,” J. Appl. Phys. 103, 094514 (2008). [CrossRef]
  22. T. G. Euser, A. J. Molenaar, J. G. Fleming, B. Gralak, A. Polman, and W. L. Vos, “All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals,” Phys. Rev. B 77, 115214 (2008). [CrossRef]
  23. R.-J. Liu, Z.-Y. Li, F. Zhou, and D.-Z. Zhang, “Waveguide coupler in three-dimensional photonic crystal,” Opt. Express 16, 5681–5688 (2008). [CrossRef]
  24. S.-Y. Su, L. Tang, and T. Yoshie, “Optical surface Bloch modes of complete photonic bandgap materials as a basis of optical sensing,” Opt. Lett. 36, 2266–2268 (2011). [CrossRef]
  25. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  26. T. B. Yu, Q. J. Wang, J. Zhang, J. Y. Yang, and S. F. Yu, “Ultracompact 2×2 photonic crystal waveguide power splitter based on self-imaging effect realized by asymmetrical interference,” IEEE Photon. Technol. Lett. 23, 1151–1153 (2011). [CrossRef]
  27. Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett. 65, 2650–2653 (1990). [CrossRef]
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited