OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: C224–C230

Engineering of the space-variant linear polarization of vortex-beams in biaxially induced crystals

Tatyana A. Fadeyeva, Constantin N. Alexeyev, Pavel M. Anischenko, and Alexander V. Volyar  »View Author Affiliations

Applied Optics, Vol. 51, Issue 10, pp. C224-C230 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1066 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We considered the propagation of Bessel beams through the biaxially induced birefringent crystal implemented by the mechanical torsion of the uniaxial crystal around its optical axis. Analyzing the solutions to the wave equation in the form of eigenmodes, we found that the system enables us to convert the beams with a uniform distribution of the linear polarization at the beam cross section into radially, azimuthally, and spirally polarized beams. Moreover, we revealed that the above system permits us to convert the beams with the space-variant linear polarization in accordance with the rule ss+1, where s is the topological index of the centered polarization singularity.

© 2012 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.1180) Physical optics : Crystal optics
(350.5030) Other areas of optics : Phase
(260.6042) Physical optics : Singular optics

Original Manuscript: November 4, 2011
Revised Manuscript: February 21, 2012
Manuscript Accepted: February 22, 2012
Published: March 30, 2012

Tatyana A. Fadeyeva, Constantin N. Alexeyev, Pavel M. Anischenko, and Alexander V. Volyar, "Engineering of the space-variant linear polarization of vortex-beams in biaxially induced crystals," Appl. Opt. 51, C224-C230 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearing of optical vortex,” J. Opt. Soc. Am. A 28, 633–640 (2011). [CrossRef]
  2. I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Relations for optical indicatrix parameters in the condition of crystal torsion,” Ukr. J. Phys. Opt. 11, 193–240 (2010). [CrossRef]
  3. I. Skab, Y. Vasylkiv, B. Zapeka, V. Savaryn, and R. Vlokh, “Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes,” J. Opt. Soc. Am. A 28, 1331–1340 (2011). [CrossRef]
  4. Y. Vasylkiv, I. Skab, and R. Vlokh, “Measurements of piezooptic coefficients π14 and π25 in Pb5Ge3O11 crystals using torsion induced optical vortex,” Ukr. J. Phys. Opt. 12, 101–108 (2011). [CrossRef]
  5. Y. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “On determination of sign of piezo-optic coefficients using torsion method,” Appl. Opt. 50, 2512–2518 (2011). [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  7. A. M. Belsky and M. A. Stepanov, “Internal conical refraction of coherent light beams,” Opt. Commun. 167, 1–5 (1999). [CrossRef]
  8. C. F. Phelan, D. P. O’Dwyer, Y. P. Rakovich, J. F. Donegan, and J. G. Lunney, “Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal,” Opt. Express 17, 12891–12899 (2009). [CrossRef]
  9. R. Vlokh, A. Volyar, O. Mys, and O. Krupych, “Appearance of optical vortex at conical refraction. Examples of NANO2 and YFeO3 crystals,” Ukr. J. Phys. Opt. 4, 90–93 (2003). [CrossRef]
  10. N. S. Kazak, N. A. Khio, and A. A. Ryzhevich, “Generation of Bessel light beams under the condition of internal conical refraction,” Quantum Electron. 29, 1020–1024 (1999). [CrossRef]
  11. V. Belyi, T. King, N. Kazak, N. Khio, E. Katranji, and A. Ryzhevich, “Methods of formation and nonlinear conversion of Bessel optical vortices,” Proc. SPIE 4403, 229–240(2001). [CrossRef]
  12. M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A 6, 289–300 (2004). [CrossRef]
  13. M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007). [CrossRef]
  14. M. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observation and theory,” Proc. R. Soc. A 462, 1629–1642 (2006). [CrossRef]
  15. M. S. Soskin and M. V. Vasnetsov, “Singular Optics,” Prog. Opt. 42, 219–276 (2001). [CrossRef]
  16. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings,” Opt. Lett. 28, 510–512 (2003). [CrossRef]
  17. T. Fadeyeva, A. Rubass, and A. Volyar, “Transverse shift of high-order paraxial vortex-beam induced by a homogeneous anisotropic medium,” Phys. Rev. A 79, 05381(2009). [CrossRef]
  18. T. Fadeyeva and A. Volyar, “Extreme spin-orbit coupling in crystal-travelling paraxial beams,” J. Opt. Soc. Am. A 27, 381–389 (2010). [CrossRef]
  19. T. Fadeyeva and A. Volyar, “Nondiffracting vortex-beams in a birefringent chiral crystal,” J. Opt. Soc. Am. A 27, 13–20 (2010). [CrossRef]
  20. A. Volyar, V. Shvedov, T. Fadeyeva, A. Desyatnikov, D. Neshev, W. Krolikowski, and Y. Kivshar, “Generation of single-charge optical vortices with an uniaxial crystal,” Opt. Express 14, 3724–3729 (2006). [CrossRef]
  21. T. Fadeyeva, V. Shvedov, N. Shostka, C. Alexeyev, and A. Volyar, “Natural shaping of the cylindrically polarized beams,” Opt. Lett. 35, 3787–3789 (2010). [CrossRef]
  22. T. Fadeyeva, C. Alexeyev, P. Anischenko, and A. Volyar, “The fine structure of the vortex-beams in the biaxial and biaxially-induced birefringent media caused by the conical diffraction,” arXiv:1107.5775.
  23. G. Phelan, J. Donegan, and J. Lunney, “Generation of a radially polarized light beams using internal conical diffraction,” Opt. Express 19, 21793–21802 (2011). [CrossRef]
  24. R. W. Dichburn, Light.3rd ed. (Academic, 1976).
  25. J. F. Nye, Natural Focusing and Fine Structure of Light(Institute of Physics, 1999).
  26. C. Alexeyev, A. Volyar, and M. Yavorsky, “Fiber optical vortices,” in Lasers, Optics and Electro-Optics Research Trends, L. I. Chen, ed. (Nova Science, 2007) 131–223.
  27. K. Volke-Sepulveda, V. Garres-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002). [CrossRef]
  28. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics, 2003).
  29. M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A 7, 685–690 (2005). [CrossRef]
  30. A. V. Volyar, V. Z. Zhilaitis, and V. G. Shvedov, “Optical eddies in small-mode fibers: II. The spin-orbit interaction,” Opt. Spectrosc. 86, 593–598 (1999). [CrossRef]
  31. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Vortex-preserving weakly guiding anisotropic twisted fibres,” J. Opt. A 6, S162–S165 (2004). [CrossRef]
  32. A. Yariv and P. Yuh, Optical Waves in Crystals (Wiley-Interscience, 1984).
  33. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).
  34. L. Marrucci, E. Karinni, S. Slussarenko, B. Piecirillo, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011). [CrossRef]
  35. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam–Berry phase optical elements,” Opt. Lett. 29, 238–240 (2004). [CrossRef]
  36. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20, 3563–3570 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited