OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: C62–C69

Analysis of the scatter growth in dispersive media with the use of dynamic light scattering

Dmitry A. Zimnyakov, Anna A. Isaeva, Elena A. Isaeva, Olga V. Ushakova, Sergey P. Chekmasov, and Sergey A. Yuvchenko  »View Author Affiliations


Applied Optics, Vol. 51, Issue 10, pp. C62-C69 (2012)
http://dx.doi.org/10.1364/AO.51.000C62


View Full Text Article

Enhanced HTML    Acrobat PDF (417 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Analysis of the structure functions of intensity fluctuations of scattered laser light was applied to monitor the phase separation in probed disperse media. UV-cured mixtures of a liquid crystal and prepolymer were studied during the formation of the structure of dispersive polymer—liquid crystal (DPLC) composites. The experimentally observed features of light beating induced by dynamic light scattering in DPLC systems (the scaling properties of the structure functions, the narrowing of the beating spectrum for certain weight fractions of the liquid-crystalline component) were interpreted in terms of the discrete scattering model using the results of statistical modeling.

© 2012 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(290.4210) Scattering : Multiple scattering
(290.5930) Scattering : Scintillation

History
Original Manuscript: November 23, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 6, 2012
Published: March 23, 2012

Citation
Dmitry A. Zimnyakov, Anna A. Isaeva, Elena A. Isaeva, Olga V. Ushakova, Sergey P. Chekmasov, and Sergey A. Yuvchenko, "Analysis of the scatter growth in dispersive media with the use of dynamic light scattering," Appl. Opt. 51, C62-C69 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-10-C62


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Z. Cummins and E. R. Pike, Photon Correlation and Light Beating Spectroscopy (Plenum, 1974).
  2. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988). [CrossRef]
  3. G. Maret and P.-E. Wolf, “Multiple light scattering from disordered media: the effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
  4. F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B 40, 2383–2406 (1989).
  5. G. Maret and P.-E. Wolf, “Static and dynamic multiple scattering of light,” Physica A 157, 293–300 (1989). [CrossRef]
  6. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  7. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiple scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
  8. D. A. Zimnyakov, “Similarity effects in multiple scattering of coherent radiation: phenomenology and experiments,” Opt. Spectrosc. 89, 453–462 (2000). [CrossRef]
  9. P. Snabre and J. Crassous, “Multispeckle diffusing wave spectroscopy of colloidal particles suspended in a random packing of glass spheres,” Eur. Phys. J. E 29, 149–155 (2009).
  10. H. M. Wyss, S. Romer, F. Scheffold, P. Schurtenberger, and L. J. Gauckler, “Diffusing-wave spectroscopy of concentrated alumina suspensions during gelation,” J. Coll. Interf. Sci. 241, 89–97 (2001). [CrossRef]
  11. S. Cohen-Addad and R. Höhler, “Bubble dynamics relaxation in aqueous foam probed by multispeckle diffusing-wave spectroscopy,” Phys. Rev. Lett. 86, 4700–4703 (2001). [CrossRef]
  12. N. Menon and D. J. Durian, “Diffusing wave spectroscopy of dynamics in a three-dimensional granular flow,” Science 275, 1920–1922 (1997). [CrossRef]
  13. L. Rovati, S. Cattini, N. Zambelli, F. Viola, and G. Staurenghi, “In-vivo diffusing-wave-spectroscopy measurements of the ocular fundus,” Opt. Express 15, 4030–4038 (2007). [CrossRef]
  14. M. Ninck, M. Untenberger, and T. Gisler, “Diffusing-wave spectroscopy with dynamic variation: disentangling the effects of blood flow and extravascular contrast tissue shearing on signals from deep tissue,” Biomed. Opt. Express 1, 1502–1513 (2010). [CrossRef]
  15. J. Li, F. Jaillon, G. Dietsche, G. Maret, and T. Gisler, “Pulsation-resolved deep tissue dynamics measured with diffusing-wave spectroscopy,” Opt. Express 14, 7841–7851 (2006). [CrossRef]
  16. K. Amundson, A. van Blaaderen, and P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films,” Phys. Rev. E 55, 1646–1654 (1997). [CrossRef]
  17. F. Roussel, C. Canlet, and B. M. Fung, “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films,” Phys. Rev. E 65, 021701-1–021701-9 (2002). [CrossRef]
  18. F. Roussel, J.-M. Boussine, U. Maschke, X. Coqueret, and F. Benmouna, “Phase diagrams and morphology of polymer dispersed liquid crystals based on nematic-liquid-crystal-monofunctional-acrylate mixtures,” Phys. Rev. E 62, 2310–2316 (2000). [CrossRef]
  19. T. Bouchaour, M. Benmouna, X. Coqueret, U. Maschke, V. Rachet, P. Le Barny, and P. Feneyrou, “UV-cured polymer dispersed liquid crystals with nanosized droplets,” Mol. Cryst. Liq. Cryst. 413, 2165–2170 (2004).
  20. L. Lucchetti and F. Simoni, “Coarsening and phase separation in ultraviolet curing polymer dispersed liquid crystals,” Appl. Phys. 88, 3934–3940 (2000). [CrossRef]
  21. K. Luo, “The morphology and dynamics of polymerization-induced phase separation,” Eur. Polymer J. 42, 1499–1505 (2006). [CrossRef]
  22. D. A. Zimnyakov and V. V. Tuchin, “Fractality of speckle intensity fluctuations,” Appl. Opt. 35, 4325–4333 (1996). [CrossRef]
  23. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  24. O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Physics 10, 1136–1142 (2000).
  25. O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006). [CrossRef]
  26. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19, 660–672 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited