OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 10 — Apr. 1, 2012
  • pp: C88–C94

Thermal energy transfer by plasmon-resonant composite nanoparticles at pulse laser irradiation

Yuri A. Avetisyan, Alexander N. Yakunin, and Valery V. Tuchin  »View Author Affiliations

Applied Optics, Vol. 51, Issue 10, pp. C88-C94 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Heating of composite plasmon-resonant nanoparticles (spherical gold nanoshells) under pulse laser illumination is considered. The numerical solution of the time-dependent heat conduction equation accounting for spatial inhomogeneities of absorbed laser radiation is performed. Important features of temperature kinetics and thermal flux inside nanoparticles are analyzed. Possible applications of the observed effects in nanotechnology and medicine are discussed.

© 2012 Optical Society of America

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.5180) Medical optics and biotechnology : Photodynamic therapy
(320.4240) Ultrafast optics : Nanosecond phenomena
(350.5340) Other areas of optics : Photothermal effects
(160.4236) Materials : Nanomaterials

Original Manuscript: December 5, 2011
Revised Manuscript: February 10, 2012
Manuscript Accepted: February 24, 2012
Published: March 27, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Yuri A. Avetisyan, Alexander N. Yakunin, and Valery V. Tuchin, "Thermal energy transfer by plasmon-resonant composite nanoparticles at pulse laser irradiation," Appl. Opt. 51, C88-C94 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006). [CrossRef]
  2. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  3. N. G. Khlebtsov, “Optics and biophotonics of nanoparticles with a plasmon resonance,” Quantum Electron. 38, 504–529 (2008). [CrossRef]
  4. V. V. Klimov, Nanoplasmonics (Fizmatlit, 2009).
  5. V. V. Tuchin, ed., Advanced Optical Cytometry: Methods and Disease Diagnoses (Wiley-VCH, 2011).
  6. G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009). [CrossRef]
  7. G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009). [CrossRef]
  8. R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role of nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006). [CrossRef]
  9. D. A. Gorin, S. A. Portnov, and O. A. Inozemtseva, et al, “Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation,” Phys. Chem. Chem. Phys. 10, 6899–6905 (2008). [CrossRef]
  10. G. F. Paciotti, D. G. I. Kingston, and L. Tamarkin, “Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors,” Drug Dev. Res. 67, 47–54 (2006). [CrossRef]
  11. G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701 (2008). [CrossRef]
  12. C. M. Pitsilides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003). [CrossRef]
  13. V. K. Pustovalov and V. A. Babenko, “Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine,” Laser Phys. Lett. 1, 516–520 (2004). [CrossRef]
  14. V. K. Pustovalov and L. G. Astafyeva, “Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion,” Nanoscale Res. Lett. 6, 448–455 (2011). [CrossRef]
  15. V. K. Pustovalov, “Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters,” Laser Phys. 21, 906–912 (2011). [CrossRef]
  16. R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol., 251718 (2008).
  17. C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom-up plasmonic structures,” New J. Phys. 10, 105016 (2008). [CrossRef]
  18. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009). [CrossRef]
  19. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2, 291–304 (2011). [CrossRef]
  20. M. Y. Park, S. Lim, S. W. Lee, and S. E. Park, “Relative parameter contributions for encapsulating silica-gold nanoshells by poly(N-isopropylacrylamide-co-acrylic acid) hydrogels,” Macromol. Res. 17, 307–312 (2009). [CrossRef]
  21. Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “On the problem of local tissue hyperthermia control: multiscale modelling of pulsed laser radiation action on a medium with embedded nanoparticles,” Quantum Electron. 40, 1081–1088 (2010). [CrossRef]
  22. Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “Novel thermal effect at nanoshell heating by pulsed laser irradiation: hoop-shaped hot zone formation,” J. Biophoton., doi:10.1002/jbio.201100074 (to be published). [CrossRef]
  23. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007), Vol. PM 166.
  24. E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  27. V. V. Tuchin, Lasers and Fiber Optics in Biomedical Science, 2nd ed. (Fizmatlit, 2010).
  28. B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, “Thermal conductivity of Ge-Si alloys at high temperatures,” Phys. Rev. 125, 44–46 (1962). [CrossRef]
  29. R. J. Hemley, C. T. Prewitt, and K. J. Kingma, “High-pressure behavior of silica,” Rev. Mineralog. Geochem. 29, 41–81 (1994).
  30. C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 °K to the melting point,” Phys. Rev. A 134, A1058–A1069 (1964).
  31. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B. 16, 3513–3534 (1977). [CrossRef]
  32. S. M. Kachan and A. N. Ponyavina, “Resonance absorption spectra of composites containing metal-coated nanoparticles,” J. Mol. Struct. 563–564, 267–272 (2001).
  33. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003). [CrossRef]
  34. A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C 112, 10641 (2008). [CrossRef]
  35. W. B. J. Zimmerman, Multiphysics Modeling with Finite Element Methods (World Scientific, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited