OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 51, Iss. 11 — Apr. 10, 2012
  • pp: 1631–1637

Generation of doubly charged vortex beam by concentrated loading of glass disks along their diameter

Ihor Skab, Yuriy Vasylkiv, Oleh Krupych, Viktoriya Savaryn, and Rostyslav Vlokh  »View Author Affiliations

Applied Optics, Vol. 51, Issue 11, pp. 1631-1637 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that a system of glass disks compressed along their diameters enables one to induce a doubly charged vortex beam in the emergent light when the incident light is circularly polarized. Using such a disk system, one can control the efficiency of conversion of the spin angular momentum to the orbital angular momentum by a loading force. The consideration presented here can be extended for the case of crystalline materials with high optical damage thresholds in order to induce high-power vortex beams.

© 2012 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.6042) Physical optics : Singular optics
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

Original Manuscript: January 3, 2012
Manuscript Accepted: January 26, 2012
Published: April 4, 2012

Ihor Skab, Yuriy Vasylkiv, Oleh Krupych, Viktoriya Savaryn, and Rostyslav Vlokh, "Generation of doubly charged vortex beam by concentrated loading of glass disks along their diameter," Appl. Opt. 51, 1631-1637 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001). [CrossRef]
  2. D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995). [CrossRef]
  3. S. Y. Kilin, “Quantum information,” Sov. Phys. Usp. 42, 435–452 (1999). [CrossRef]
  4. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998). [CrossRef]
  5. O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Biaxial crystal-based optical tweezers,” Ukr. J. Phys. Opt. 11, 99–106 (2010). [CrossRef]
  6. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011). [CrossRef]
  7. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  8. V. G. Shvedov, “Nonparaxial singular beams inside the focal region of a high numerical-aperture lens,” Ukr. J. Phys. Opt. 12, 109–116 (2011). [CrossRef]
  9. K. Watanabe, N. Horiguchi, and H. Kano, “Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination,” Appl. Opt. 46, 4985–4990 (2007). [CrossRef]
  10. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85, 6239–6341 (2004). [CrossRef]
  11. D. Biss and T. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925 (2003). [CrossRef]
  12. E. Yew and C. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275, 453–457 (2007). [CrossRef]
  13. B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversation via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010). [CrossRef]
  14. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef]
  15. L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Cryst. Liq. Cryst. 488, 148–162(2008). [CrossRef]
  16. A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Generation of single-charge optical vortices with an uniaxial crystal,” Opt. Express 14, 3724–3729 (2006). [CrossRef]
  17. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1, 783–795 (2011). [CrossRef]
  18. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011). [CrossRef]
  19. I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex,” J. Opt. Soc. Am. A. 28, 633–640 (2011). [CrossRef]
  20. Y. Vasylkiv, I. Skab, and R. Vlokh, “Measurements of piezooptic coefficients π14 and π52 in Pb5Ge3O11 crystals using torsion induced optical vortex,” Ukr. J. Phys. Opt. 12, 101–108 (2011). [CrossRef]
  21. I. Skab, Y. Vasylkiv, B. Zapeka, V. Savaryn, and R. Vlokh, “On the appearance of singularities of optical field under torsion of crystals containing three-fold symmetry axes,” J. Opt. Soc. Am. A 28, 1331–1340 (2011).
  22. I. P. Skab, Y. Vasylkiv, and R. O. Vlokh, “On the possibility of electrooptic operation by orbital angular momentum of light beams via Pockels effect in crystals,” Ukr. J. Phys. Opt. 12, 127–136 (2011). [CrossRef]
  23. Y. Vasylkiv, O. Krupych, I. Skab, and R. Vlokh, “On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals,” Ukr. J. Phys. Opt. 12, 171–179 (2011). [CrossRef]
  24. I. Skab, Y. Vasylkiv, I. Smaga, and R. Vlokh, “Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals,” Phys. Rev. A 84, 043815 (2011). [CrossRef]
  25. M. M. Frocht, Photoelasticity (Wiley, 1965).
  26. GOST 51130-86, Silica Optical Glass. General Specification (Izd. Standartov, 1999).
  27. M. R. Dennis, “Local phase structure of wave dislocation lines: twist and twirl,” J. Opt. A: Pure Appl. Opt. 6, S202–S208 (2004). [CrossRef]
  28. I. Skab, Y. Vasylkiv, I. Smaga, V. Savaryn, and R. Vlokh, “On the method for measuring piezooptic coefficients π25 and π14 in the crystals belonging to point symmetry groups 3 and 3¯,” Ukr. J. Phys. Opt. 12, 28–35 (2011). [CrossRef]
  29. Y. Vasylkiv, V. Savaryn, I. Smaga, O. Krupych, I. Skab, and R. Vlokh, “Studies of piezooptic coefficients in LiNbO3 crystals using a crystalline disk compressed along its diameter,” Ukr. J. Phys. Opt. 12, 180–190 (2011). [CrossRef]
  30. I. Martynyuk-Lototska, O. Mys, O. Krupych, V. Adamiv, Ya. Burak, R. Vlokh, and W. Schranz, “Elastic, piezooptic and acoustooptic properties of borate crystals (BaB2O4, Li2B4O7 and CsLiB6O10),” Integr. Ferroelectr. 63, 99–103 (2004). [CrossRef]
  31. C. T. Chen, B. C. Wu, A. D. Jiang, and G. M. You, “A new type ultraviolet SHG crystal β-BaB2O4,” Sci. Sin. Ser. B 28, 235–243 (1985).
  32. R. Vlokh, Y. Pyatak, and I. Skab, “Elasto-optic effect in LiNbO3 under the crystal bending,” Ferroelectrics 126, 239–242 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited