OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 51, Iss. 11 — Apr. 10, 2012
  • pp: 1660–1670

Relevance of an inverse problem approach to overcome cut-off wavenumbers disparities in infrared stationary Fourier transform spectrometers

Céline Benoît-Pasanau, Frédéric Gillard, Yann Ferrec, Sidonie Lefebvre, Sylvain Rommeluère, Nicolas Guérineau, and Jérôme Primot  »View Author Affiliations

Applied Optics, Vol. 51, Issue 11, pp. 1660-1670 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the major limitations to the use of infrared focal plane arrays (IRFPAs) in stationary Fourier transform spectrometers (FTSs) comes from the spatial inhomogeneities of the pixel responses, where the inhomogeneities of the cut-off wavenumbers of the pixels can prevail. The hypothesis commonly assumed for FTSs that all the pixels are equivalent is thus inaccurate and results in a degradation of the estimated spectrum, even far from the cut-off wavenumbers. However, if the individual spectral responses of the pixels are measured beforehand, this a priori information can be used in the inversion process to produce reliable spectra. Thus, spatial inhomogeneities are not an obstacle for the use of infrared stationary FTS. This result is illustrated in this paper by numerical simulations, based on a realistic description of an IRFPA.

© 2012 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(100.3190) Image processing : Inverse problems
(300.6190) Spectroscopy : Spectrometers

ToC Category:

Original Manuscript: September 7, 2011
Manuscript Accepted: October 19, 2011
Published: April 4, 2012

Céline Benoît-Pasanau, Frédéric Gillard, Yann Ferrec, Sidonie Lefebvre, Sylvain Rommeluère, Nicolas Guérineau, and Jérôme Primot, "Relevance of an inverse problem approach to overcome cut-off wavenumbers disparities in infrared stationary Fourier transform spectrometers," Appl. Opt. 51, 1660-1670 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Nelson, J. F. Johnson, and T. S. Lomheim, “General noise processes in hybrid infrared focal plane arrays,” Opt. Eng. 30, 1682–1700 (1991). [CrossRef]
  2. A. F. Milton, F. R. Barone, and M. R. Kruer, “Influence of non-uniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
  3. M. Schulz and L. Caldwell, “Nonuniformity correction and correctability of infrared focal plane arrays,” Infrared Phys. 36, 763–777 (1994).
  4. F. Gillard, S. Lefebvre, Y. Ferrec, L. Mugnier, S. Rommeluère, C. Benôt-Pasanau, N. Guérineau, and J. Taboury, “Inverse problem approach for stationary Fourier-transform spectrometers,” Opt. Lett. 36, 2444–2446 (2011). [CrossRef]
  5. Y. Ferrec, “Spectro-imagerie aéroportée par transformation de Fourier avec un interférométre statique à décalage latéral: réalisation et mise en oeuvre,” thesis manuscript (Université Paris-Sud XI (2008).
  6. N. Ayari-Matallah, “Imagerie hyperspectrale par transformée de Fourier: Limites de détection, caractérisation des images et nouveaux concepts d’imagerie,” thesis manuscript (Université Paris-Sud XI (2011).
  7. D. Bergstrom, I. Renhorn, T. Svensson, R. Persson, T. Hallberg, R. Lindell, and G. Boreman, “Noise properties of a corner-cube Michelson interferometer LWIR hyperspectral imager,” Proc. SPIE 7660, 76602F (2010). [CrossRef]
  8. D. Cabib, A. Gil, M. Lavi, R. A. Buckwald, and S. G. Lipson, “New 3‒5μ wavelength range hyperspectral imager for ground and airborne use based on a single element interferometer,” Proc. SPIE 6737, 673704 (2007). [CrossRef]
  9. S. Rommeluère, N. Guérineau, R. Haidar, J. Deschamps, E. De Borniol, A. Million, J. P. Chamonal, and G. Destefanis, “Infrared focal plane array with a built-in stationary Fourier-transform spectrometer: basic concepts,” Opt. Lett. 33, 1062–1064 (2008). [CrossRef]
  10. J. Ferrand, G. Custillon, S. Kochtcheev, S. Blaize, A. Morand, G. Leblond, P. Benech, P. Royer, P. Kern, and E. Le Coarer, “A SWIFTS operating in visible and near-infrared,” Proc. SPIE 7010, 701046 (2008). [CrossRef]
  11. S. Thétas, N. Guérineau, P. Cymbalista, H. Sauer, and J. Taboury, “Conception of a stationary Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” in Fourier Transform Spectroscopy/Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest Series (CD) (Optical Society of America, 2005), paper FWC3.
  12. P. Hébert, E. Cansot, C. Pierangelo, C. Buil, F. Bernard, J. Loesel, T. Trémas, L. Perrin, E. Courau, C. Casteras, I. Maussang, and D. Simeoni, “Instrumental concept and preliminary performances of SIFTI: Static Infrared Fourier Transform Interferometer,” presented at International Conference on Space Optics, Toulouse, France, 14–17October2008.
  13. A. Dariel, P. Chorier, N. Reeb, B. Terrier, M. Vuillermet, and P. Tribolet, “Development of a long wave infrared detector for SGLI instrument,” Proc. SPIE 6744, 674413 (2007). [CrossRef]
  14. E. P. G. Smith, A. M. Gallagher, T. J. Kostrzewa, M. L. Brest, R. W. Graham, C. L. Kuzen, E. T. Hughes, T. F. McEwan, G. M. Venzor, E. A. Patten, and W. A. Radford, “Large format HgCdTe focal plane arrays for dual-band long-wavelength infrared detection,” Proc. SPIE 7298, 72981Y (2009). [CrossRef]
  15. E. De Borniol, G. Destefanis, A. Manissadjian, and P. Tribolet, “Characterization of high performances long wave and very long wave HgCdTe staring arrays,” Proc. SPIE 5978, 597819 (2005). [CrossRef]
  16. S. Rommeluère, R. Haidar, N. Gue, J. Deschamps, E. De Borniol, A. Million, J. P. Chamonal, and G. Destefanis, “Single-scan extraction of two-dimensional parameters of infrared focal plane arrays utilizing a Fourier-transform spectrometer,” Appl. Opt. 46, 1379–1384 (2007). [CrossRef]
  17. N. Guérineau, S. Rommeluère, E. Di Mambro, I. Ribet, and J. Primot, “New techniques of characterization,” C.R. Physique 4, 1175–1185 (2003). [CrossRef]
  18. Note that the spectrum was not apodized. The use of an apodization window would reduce the noise over the spectrum, if the latter is barely correlated. However, as is shown in Eq. (6), for a significant dispersion of the cut-off wavenumbers, the effects of the disparities are attenuated for high optical differences. This is also the case if the spectral cut-off is smoother than a Heaviside function (see Subsection 4.E). Then, the noise over the spectrum becomes correlated and apodization has only a limited impact on its level.
  19. C. L. Lawson and R. J. Hanson, Solving Least-Squares Problems (Prentice Hall, 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited