OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 51, Iss. 11 — Apr. 10, 2012
  • pp: 1681–1687

Nd:Li6Y(BO3)3 crystal waveguide properties at wavelengths of 633 and 1539 nm produced by oxygen or silicon ion implantation

Peng Liu, Qing Huang, Tao Liu, Sha-Sha Guo, Lian Zhang, and Xue-Lin Wang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 11, pp. 1681-1687 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (873 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the waveguide formation in the Nd:Li6Y(BO3)3 laser crystal by oxygen or silicon ion implantation, respectively, and how the waveguide structure effectively supports the fundamental mode in the visible and near-infrared telecommunication band. Compared with Si-ion, the waveguide produced by O-ion has a larger effective refractive index of fundamental mode and lower propagation loss, which shows that peak position of implanted ion nuclear energy loss has a significant impact on waveguide features. The investigation of the photoluminescence and Raman spectra demonstrates that the Nd3+ luminescence feature and crystal structure of the waveguide active region do not change significantly and gain good preservation after ion implantation.

© 2012 Optical Society of America

OCIS Codes
(160.3380) Materials : Laser materials
(230.7390) Optical devices : Waveguides, planar
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Optical Devices

Original Manuscript: November 21, 2011
Revised Manuscript: December 29, 2011
Manuscript Accepted: January 30, 2012
Published: April 4, 2012

Peng Liu, Qing Huang, Tao Liu, Sha-Sha Guo, Lian Zhang, and Xue-Lin Wang, "Nd:Li6Y(BO3)3 crystal waveguide properties at wavelengths of 633 and 1539 nm produced by oxygen or silicon ion implantation," Appl. Opt. 51, 1681-1687 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hoenninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem. 184, 441–446 (2011). [CrossRef]
  2. Y. Huang, C. Tu, Z. Luo, and G. Chen, “Spectra and intensity parameters of Li6Y(BO3)3:Nd3+ laser crystal,” Opt. Commun. 92, 57–60 (1992). [CrossRef]
  3. C. W. E. van Eijk, A. Bessière, and P. Dorenbos, “Inorganic thermal-neutron scintillators,” Nucl. Instrum. Meth. Phys. Res. A 529, 260–267 (2004). [CrossRef]
  4. J. Sablayrolles, V. Jubera, J. P. Chaminade, I. Manek-Honninger, G. S. Murugan, T. Cardinal, R. Olazcuaga, A. Garcia, and F. Salin, “Crystal growth, luminescent and lasing properties of the ytterbium doped Li6Y(BO3)3 compound,” Opt. Mater. 27, 1681–1685 (2005). [CrossRef]
  5. J. Sablayrolles, V. Jubera, F. Guillen, R. Decourt, M. Couzi, J. P. Chaminade, and A. Garcia, “Infrared and visible spectroscopic studies of the ytterbium doped borate Li6Y(BO3)3,” Opt. Commun. 280, 103–109 (2007). [CrossRef]
  6. M. Delaigue, V. Jubera, J. Sablayrolles, J. P. Chaminade, A. Garcia, and I. Manek-Honninger, “Mode-locked and Q-switched laser operation of the Yb-doped Li6Y(BO3)3 crystal,” Appl. Phys. B 87, 693–696 (2007). [CrossRef]
  7. Y. W. Zhao, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:Li6Y(BO3)3 crystal,” Mater. Lett. 60, 418–421 (2006). [CrossRef]
  8. Y. W. Zhao, X. H. Gong, Y. J. Chen, L. X. Huang, Y. F. Lin, G. Zhang, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties of Er3+ ions in Li6Y(BO3)3 crystal,” Appl. Phys. B 88, 51–55 (2007). [CrossRef]
  9. J. Hölsä and M. Leskelä, “Optical study of Eu3+ luminescence in lithium rare earth borates, Li6RE(BO3)3; RE=Gd, Y,” J. Lumin. 48–49, 497–500 (1991). [CrossRef]
  10. J. P. Chaminade, O. Viraphong, F. Guillen, C. Fouassier, and B. Czirr, “Crystal growth and optical properties of new neutron detectors Ce3+:Li6R(BO3)3 (R=Gd, Y),” IEEE Trans. Nucl. Sci. 48, 1158–1161 (2001). [CrossRef]
  11. E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, 1999).
  12. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626–637 (2007). [CrossRef]
  13. Eric Lallier, “Rare-earth-doped glass and LiNBO3 waveguide lasers and optical amplifiers,” Appl. Opt. 31, 5276–5282 (1992). [CrossRef]
  14. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
  15. F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007). [CrossRef]
  16. J. F. Ziegler, J. P. Biesack, and U. Littmark, Computer code TRIM, http://www.srim.org .
  17. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986). [CrossRef]
  18. D. Yevick and W. Bardyszewiski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17, 329–330 (1992). [CrossRef]
  19. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120(2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited