OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 51, Iss. 11 — Apr. 10, 2012
  • pp: 1757–1764

Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers

Sisir Kumar Garai  »View Author Affiliations

Applied Optics, Vol. 51, Issue 11, pp. 1757-1764 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (659 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.

© 2012 Optical Society of America

OCIS Codes
(200.3760) Optics in computing : Logic-based optical processing
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Optics in Computing

Original Manuscript: August 5, 2011
Revised Manuscript: December 11, 2011
Manuscript Accepted: December 20, 2011
Published: April 6, 2012

Sisir Kumar Garai, "Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers," Appl. Opt. 51, 1757-1764 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Jing, G. Meloni, G. Berrettini, L. Potì, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010). [CrossRef]
  2. S. Zhang, Z. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005). [CrossRef]
  3. J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007). [CrossRef]
  4. R. Geldenhuys, Y. Liu, N. Calabretta, M. Hill, F. Huijskens, G. Khoe, and H. J. Dorren, “All-optical signal processing for optical packet switching,” J. Opt. Netw. 3, 854–865 (2004). [CrossRef]
  5. N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007). [CrossRef]
  6. S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren, “Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007). [CrossRef]
  7. M. S. Alam and M. A. Karim, “Multiple-valued logic unit design using polarization-encoded optical shadow-casting,” Opt. Laser Technol. 25, 17–23 (1993). [CrossRef]
  8. T. Chattopadhyay, “All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer-based switch: a theoretical study,” Appl. Opt. 49, 5226–5235 (2010). [CrossRef]
  9. A. K. Ghosh and A. Basuray, “Trinary flip-flops using Savart plate and spatial light modulator for optical computation in multivalued logic,” Optoelectron. Lett. 4, 0443–0446 (2008). [CrossRef]
  10. S. K. Garai, “Method of all-optical frequency encoded decimal to binary and BCD, binary to gray and gray to binary data conversion using semiconductor optical amplifiers,” Appl. Opt. 50, 3795–3807 (2011). [CrossRef]
  11. S. K. Garai, “A novel method of designing all optical frequency encoded Fredkin and Toffoli logic gates using semiconductor optical amplifiers,” IET Optoelectron. 5, 247–254 (2011). [CrossRef]
  12. S. K. Garai, “A novel all-optical frequency encoded method to develop arithmetic and logic unit (ALU) using semiconductor optical amplifiers,” J. Lightwave Technol. 29, 3506–3514 (2011). [CrossRef]
  13. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic, 2002).
  14. N. K. Dutta and Q. Wang, “Function properties and applications,” Semiconductor Optical Amplifiers (World Scientific, 2006), Chap. 8.
  15. L. Q. Guo and M. J. Connelly, “All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier,” Opt. Express 14, 2938–2943 (2006). [CrossRef]
  16. L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotation in semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007). [CrossRef]
  17. Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003). [CrossRef]
  18. S. K. Garai, “A method of developing frequency encoded multi-bit optical data comparator using semiconductor optical amplifier,” Opt. Laser Technol. 43, 124–131 (2011). [CrossRef]
  19. G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997). [CrossRef]
  20. S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010). [CrossRef]
  21. H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005). [CrossRef]
  22. H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zender interferometer,” Opt. Express 13, 1892–1899 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited