OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 51, Iss. 11 — Apr. 10, 2012
  • pp: 1822–1827

Master key generation to avoid the use of an external reference wave in an experimental JTC encrypting architecture

Edgar Rueda, Carlos Ríos, John Fredy Barrera, and Roberto Torroba  »View Author Affiliations


Applied Optics, Vol. 51, Issue 11, pp. 1822-1827 (2012)
http://dx.doi.org/10.1364/AO.51.001822


View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In experimental optodigital encrypting architectures, the use of a reference wave is essential. In this contribution, we present an experimental alternative to avoid the reference wave during the encrypting procedure in a joint transform correlator architecture by introducing the concept of a master key. Besides, the master key represents an additional security element for the entire protocol. In our method, the master key is holographically processed and used during the encryption process with the encrypting key. We give the mathematical description for the process in case of a single input object and then we extend it to multiple input objects. We present the experimental demonstration of the proposed method including two examples where this technique is successfully applied for several input objects.

© 2012 Optical Society of America

OCIS Codes
(070.4560) Fourier optics and signal processing : Data processing by optical means
(060.4785) Fiber optics and optical communications : Optical security and encryption

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 5, 2011
Revised Manuscript: February 9, 2012
Manuscript Accepted: February 10, 2012
Published: April 10, 2012

Citation
Edgar Rueda, Carlos Ríos, John Fredy Barrera, and Roberto Torroba, "Master key generation to avoid the use of an external reference wave in an experimental JTC encrypting architecture," Appl. Opt. 51, 1822-1827 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-11-1822


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon 1, 589–636 (2009). [CrossRef]
  2. O. Matoba, T. Nomura, E. Pérez-Cabré, M. S. Millán, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009). [CrossRef]
  3. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293 (1999). [CrossRef]
  4. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000). [CrossRef]
  5. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999). [CrossRef]
  6. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006). [CrossRef]
  7. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109–112 (2006). [CrossRef]
  8. G. Situ and J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Opt. Lett. 30, 1306–1308 (2005). [CrossRef]
  9. T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39, 2031–2045 (2000). [CrossRef]
  10. E. Rueda, J. F. Barrera R., R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun. 282, 3243–3249 (2009). [CrossRef]
  11. E. Tajahuerce, O. Matoba, S. C. Verrall, and B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000). [CrossRef]
  12. C. La Mela and C. Iemmi, “Optical encryption using phase-shifting interferometry in a joint transform correlator,” Opt. Lett. 31, 2562–2564 (2006). [CrossRef]
  13. A. Nelleri, J. Joseph, and K. Singh, “Lensless complex data encoding for digital holographic whole information security,” Opt. Eng. 47, 115801 (2008). [CrossRef]
  14. E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture,” Opt. Eng. 48, 027006 (2009). [CrossRef]
  15. R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett. 35, 333–335 (2010). [CrossRef]
  16. C. L. Chen, L. C. Lin, and C. J. Cheng, “Design and implementation of an optical joint transform encryption system using complex-encoded key mask,” Opt. Eng. 47, 068201 (2008). [CrossRef]
  17. E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284, 2500–2504 (2011). [CrossRef]
  18. J. F. Barrera, E. Rueda, C. Ríos, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284, 4350–4355 (2011). [CrossRef]
  19. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited