Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wind speed measurements of Doppler-shifted absorption lines using two-beam interferometry

Not Accessible

Your library or personal account may give you access

Abstract

Wind speed can be measured remotely, with varying degrees of success, using interferometry of Doppler-shifted optical spectra. Under favorable conditions, active systems using laser pulse backscatter are capable of high resolution; passive systems, which measure Doppler shifts of atmospheric emission lines in the mesosphere, have also been shown. Two-beam interferometry of Doppler-shifted absorption lines has not been previously investigated; we describe such an effort here. Even in a well-defined environment, measuring absorption line Doppler shifts requires overcoming several technical hurdles in order to obtain sensitivity to wind speeds on the order of 10m/s. These hurdles include precise knowledge of the shape of the absorption line, tight, stable filtering, and understanding precisely how an interferometer phase should respond to a change in the absorption profile. We discuss the instrument design, a Michelson interferometer and Fabry–Perot filter, and include an analysis of how to choose the optimal optical path difference of the two beams for a given spectrum and filter. We discuss two beam interferometric measurements of emission line and absorption line Doppler shifts, and include an illustration of the effects of filtering on LIDAR Doppler interferometry. Finally, we discuss the construction and implementation of a Michelson interferometer used to measure Doppler shifts of oxygen absorption lines and present results obtained with 5m/s wind speed measurement precision. Although the theoretical shot noise limited Doppler wind speed measurement of the system described can be less than 1m/s, the instrument’s resolution limit is dominated by residual filter instability. Application of absorption line interferometry to determine atmospheric wind speeds remains problematic.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer

Jeffery A. Langille, William E. Ward, Alan Scott, and Dennis L. Arsenault
Appl. Opt. 52(8) 1617-1628 (2013)

Performance evaluation of a thermal Doppler Michelson interferometer system

Reza Mani, Steven Dobbie, Alan Scott, Gordon Shepherd, William Gault, and Stephen Brown
Appl. Opt. 44(33) 7144-7155 (2005)

Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis

Zhangjun Wang, Zhishen Liu, Liping Liu, Songhua Wu, Bingyi Liu, Zhigang Li, and Xinzhao Chu
Appl. Opt. 49(36) 6960-6978 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved