OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 1872–1878

Tailored complex 3D vortex lattice structures by perturbed multiples of three-plane waves

Jolly Xavier, Sunil Vyas, Paramasivam Senthilkumaran, and Joby Joseph  »View Author Affiliations


Applied Optics, Vol. 51, Issue 12, pp. 1872-1878 (2012)
http://dx.doi.org/10.1364/AO.51.001872


View Full Text Article

Enhanced HTML    Acrobat PDF (1310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As three-plane waves are the minimum number required for the formation of vortex-embedded lattice structures by plane wave interference, we present our experimental investigation on the formation of complex 3D photonic vortex lattice structures by a designed superposition of multiples of phase-engineered three-plane waves. The unfolding of the generated complex photonic lattice structures with higher order helical phase is realized by perturbing the superposition of a relatively phase-encoded, axially equidistant multiple of three noncoplanar plane waves. Through a programmable spatial light modulator assisted single step fabrication approach, the unfolded 3D vortex lattice structures are experimentally realized, well matched to our computer simulations. The formation of higher order intertwined helices embedded in these 3D spiraling vortex lattice structures by the superposition of the multiples of phase-engineered three-plane waves interference is also studied.

© 2012 Optical Society of America

OCIS Codes
(090.1970) Holography : Diffractive optics
(260.3160) Physical optics : Interference
(050.4865) Diffraction and gratings : Optical vortices
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Physical Optics

History
Original Manuscript: October 5, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: December 16, 2011
Published: April 11, 2012

Citation
Jolly Xavier, Sunil Vyas, Paramasivam Senthilkumaran, and Joby Joseph, "Tailored complex 3D vortex lattice structures by perturbed multiples of three-plane waves," Appl. Opt. 51, 1872-1878 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-12-1872


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974). [CrossRef]
  2. V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992). [CrossRef]
  3. I. Freund and N. Shvartsman, “Wave-field phase singularities: the sign principle,” Phys. Rev. A 50, 5164–5172 (1994). [CrossRef]
  4. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009). [CrossRef]
  5. D. L. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic, 2008).
  6. K. O’Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves,” Opt. Express 14, 3039–3044 (2006). [CrossRef]
  7. G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E 75, 066613 (2007). [CrossRef]
  8. J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198, 21–27 (2001). [CrossRef]
  9. L. G. Wang, L. Q. Wang, and S. Y. Zhu, “Formation of optical vortices using coherent laser beam arrays,” Opt. Commun. 282, 1088–1094 (2009). [CrossRef]
  10. A. Dreischuh, S. Chervenkov, D. Neshev, G. G. Paulus, and H. Walther, “Generation of lattice structures of optical vortices,” J. Opt. Soc. Am. B 19, 550–556 (2002). [CrossRef]
  11. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46, 2893–2898 (2007). [CrossRef]
  12. G. C. G. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101, 100801 (2008). [CrossRef]
  13. V. Arrizón, D. Sánchez de-la-Llave, G. Méndez, and U. Ruiz, “Efficient generation of periodic and quasi-periodic non-diffractive optical fields with phase holograms,” Opt. Express 19, 10553–10562 (2011). [CrossRef]
  14. Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A 83, 053813 (2011). [CrossRef]
  15. J. Xavier and J. Joseph, “Tunable complex photonic chiral lattices by reconfigurable optical phase engineering,” Opt. Lett. 36, 403–405 (2011). [CrossRef]
  16. J. Xavier, S. Vyas, P. Senthilkumaran, C. Denz, and J. Joseph, “Sculptured 3D twister superlattices embedded with tunable vortex spirals,” Opt. Lett. 36, 3512–3514 (2011). [CrossRef]
  17. K. J. H. Law, A. Saxena, P. G. Kevrekidis, and A. R. Bishop, “Stable structures with high topological charge in nonlinear photonic quasicrystals,” Phys. Rev. A 82, 035802 (2010). [CrossRef]
  18. D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33, 198–200 (2008). [CrossRef]
  19. J. Xavier, P. Rose, B. Terhalle, J. Joseph, and C. Denz, “Three-dimensional optically induced reconfigurable photorefractive nonlinear photonic lattices,” Opt. Lett. 34, 2625–2627 (2009). [CrossRef]
  20. C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4, 568–580 (2010). [CrossRef]
  21. J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater. 22, 356–360 (2010). [CrossRef]
  22. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beam widths from a star,” Nature 464, 1018–1020 (2010). [CrossRef]
  23. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001). [CrossRef]
  24. M. Wegener and S. Linden, “Shaping optical space with metamaterials,” Phys. Today 63, 32–36 (2010). [CrossRef]
  25. G. Indbetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993). [CrossRef]
  26. P. Senthilkumaran, F. Wyrowski, and H. Schimmel, “Vortex stagnation problem in iterative Fourier transform algorithms,” Opt. Lasers Eng. 43, 43–56 (2005). [CrossRef]
  27. J. Xavier, S. Vyas, P. Senthilkumaran, and J. Joseph, “Complex 3D vortex lattice formation by phase-engineered multiple beam interference,” Int. J. Opt. 2012, 863875 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (853 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited