OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 1879–1885

Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials

Pei Ding, Chunzhen Fan, Yongguang Cheng, Erjun Liang, and Qianzhong Xue  »View Author Affiliations


Applied Optics, Vol. 51, Issue 12, pp. 1879-1885 (2012)
http://dx.doi.org/10.1364/AO.51.001879


View Full Text Article

Acrobat PDF (915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate theoretically an analog of electromagnetically induced transparency (EIT) in the plasmonic metamaterial with the unit cell consisting of three parallel metallic rods. The electromagnetic mechanism for the EIT-like transmission is discussed based on our investigation of the localized surface plasmon resonances in three trirod configurations. We find that the transmission minima surrounding the transparency window on both sides correspond to two detuned magnetic resonances, which arise respectively from the antiphase plasmon couplings between a long rod and a short rod and between two short rods. A decrease of more than 10 times in the group velocity can be achieved for the trirod structure at the transparency window in the optical regime, and the EIT-like response can be well described by the theoretical model of two harmonic oscillators. This work not only reveals the EIT-like transmission in plasmonic metamaterial consisting of detuned magnetic “atoms,” but also provides further insight into the plasmons’ interactions, especially for metallic nanostructures comprising multiple metallic elements.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Materials

History
Original Manuscript: October 10, 2011
Revised Manuscript: December 26, 2011
Manuscript Accepted: December 30, 2011
Published: April 11, 2012

Citation
Pei Ding, Chunzhen Fan, Yongguang Cheng, Erjun Liang, and Qianzhong Xue, "Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials," Appl. Opt. 51, 1879-1885 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-12-1879


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997). [CrossRef]
  2. N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: sharp Fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009). [CrossRef]
  3. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef]
  4. N. Liu, L. Langguth, T. Weiss, J. K’Stel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef]
  5. H. Xu, Y. Lu, Y. Lee, and B. S. Ham, “Studies of electromagnetically induced transparency in metamaterials,” Opt. Express 18, 17736–17747 (2010). [CrossRef]
  6. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011). [CrossRef]
  7. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). [CrossRef]
  8. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007). [CrossRef]
  9. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef]
  10. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009). [CrossRef]
  11. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1, 391–399 (2011). [CrossRef]
  12. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009). [CrossRef]
  13. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009). [CrossRef]
  14. J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18, 17997–18002 (2010). [CrossRef]
  15. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011). [CrossRef]
  16. B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express 19, 628–637 (2011). [CrossRef]
  17. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010). [CrossRef]
  18. S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13, 023034 (2011). [CrossRef]
  19. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011). [CrossRef]
  20. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photon. 3, 287–291 (2009). [CrossRef]
  21. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009). [CrossRef]
  22. J. Zhou, E. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006). [CrossRef]
  23. J. Cao, H. Liu, T. Li, S. Wang, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a trirod structure,” J. Opt. Soc. Am. B 26, B96–B101 (2009). [CrossRef]
  24. F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a trirod structure,” Phys. Rev. B 76, 075110 (2007). [CrossRef]
  25. V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805(2008). [CrossRef]
  26. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009). [CrossRef]
  27. M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005). [CrossRef]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited