OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 1905–1909

Generation of deep ultraviolet narrow linewidth laser by mixing frequency Ti:sapphire laser at 5 kHz repetition rate

Nan Wang, Rui Wang, Hao Teng, Dehua Li, and Zhiyi Wei  »View Author Affiliations

Applied Optics, Vol. 51, Issue 12, pp. 1905-1909 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a scheme to generate deep ultraviolet source by the single-stage high-power Ti:sapphire laser with linewidth of 0.05 nm cryogenically operating at repetition rate of 5 kHz. The fundamental laser was tuned by an intracavity birefringent filter and three etalons with an output power greater than 8 W, corresponding to about 17% optical efficiency. The pulse width was 112 ns and M2<1.1. By using the nonlinear crystals BiB3O6 and KBe2BO3F2, the output power of 2.2 W at second harmonic and 8.5 mW at fourth harmonic laser of about 195 nm were produced. This compact high-repetition rate laser with narrow linewidth would be a promising tunable source for spectroscopy.

© 2012 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(190.4160) Nonlinear optics : Multiharmonic generation
(300.3700) Spectroscopy : Linewidth

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 22, 2011
Revised Manuscript: January 21, 2012
Manuscript Accepted: February 11, 2012
Published: April 11, 2012

Nan Wang, Rui Wang, Hao Teng, Dehua Li, and Zhiyi Wei, "Generation of deep ultraviolet narrow linewidth laser by mixing frequency Ti:sapphire laser at 5 kHz repetition rate," Appl. Opt. 51, 1905-1909 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. J. Zhao, R. P. Chen, C. Tengroth, and T. G. Spiro, “Solid-state tunable kHz ultraviolet laser for Raman applications,” Appl. Spectrosc. 53, 1200–1205 (1999). [CrossRef]
  2. T. Suganuma, H. Kubo, O. Wakabayashi, H. Mizoguchi, and K. Nakao, “157 nm coherent light source as an inspection tool for F2 laser lithography,” Opt. Lett. 27, 46–48 (2002). [CrossRef]
  3. W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, “Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy,” Appl. Phys. B 80, 669–680 (2005). [CrossRef]
  4. T. W. Hansch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895–898 (1972). [CrossRef]
  5. L. Velarde, D. P. Engelhart, D. Matsiev, J. LaRue, D. J. Auerbach, and A. M. Wodtke, “Generation of tunable narrow bandwidth nanosecond pulses in the deep ultraviolet for efficient optical pumping and high resolution spectroscopy,” Rev. Sci. Instrum. 81, 063106 (2010). [CrossRef]
  6. N. V. Karlov, B. B. Krynetskii, V. A. Mishin, and A. M. Prokhorov, “Laser isotope separation of rare earth elements,” Appl. Opt. 17, 856–862 (1978). [CrossRef]
  7. J. Sakuma, K. Deki, A. Finch, Y. Ohsako, and T. Yokota, “All-solid-state, high-power, deep-UV laser system based on cascaded sum-frequency mixing in CsLiB6O10 crystals,” Appl. Opt. 39, 5505–5511 (2000). [CrossRef]
  8. T. Kanai, X. Y. Wang, S. Adachi, S. Watanabe, and C. T. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17, 8696–8703 (2009). [CrossRef]
  9. J. F. Zhu, W. J. Ling, Z. H. Wang, P. Wang, J. H. Sun, Z. Y. Wei, D. C. Zhang, X. W. Ma, and W. L. Zhan, “High-energy picosecond near-vacuum ultraviolet pulses generated by sum-frequency mixing of an amplified Ti:sapphire laser,” Appl. Opt. 46, 6228–6231 (2007). [CrossRef]
  10. P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27, 1039–1047 (1991). [CrossRef]
  11. D. M. Gaudiosi, A. L. Lytle, P. Kohl, M. M. Murnane, H. C. Kapteyn, and S. Backus, “11 W average power Ti:sapphire amplifier system using downchirped pulse amplification,” Opt. Lett. 29, 2665–2667 (2004). [CrossRef]
  12. I. Matsushima, H. Yashiro, and T. Tomie, “10 kHz 40 W Ti:sapphire regenerative ring amplifier,” Opt. Lett. 31, 2066–2068 (2006). [CrossRef]
  13. T. D. Raymond and A. V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991). [CrossRef]
  14. H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93, 323–326 (2008). [CrossRef]
  15. C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, and G. K. L. Wong, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996). [CrossRef]
  16. C. T. Chen, S. Y. Luo, X. Y. Wang, G. L. Wang, X. H. Wen, H. X. Wu, X. Zhang, and Z. Y. Xu, “Deep UV nonlinear optical crystal: RbBe2BO3F2,” J. Opt. Soc. Am. B 26, 1519–1525 (2009). [CrossRef]
  17. G. C. Bhar, U. Chatterjee, A. M. Rudra, P. Kumbhakar, R. K. Route, and R. S. Feigelson, “Generation of tunable 187.9–196 nm radiation in β-Ba2BO4,” Opt. Lett. 221606–1608 (1997). [CrossRef]
  18. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett. 19, 1538–1540 (1994). [CrossRef]
  19. T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. T. Chen, C. Q. Zhang, Z. Y. Xu, and J. Y. Wang, “Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser,” J. Opt. Soc. Am. B 21, 370–375 (2004). [CrossRef]
  20. “Free software SNLO,” http://www.as-photonics.com/snlo .
  21. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited