OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 1962–1967

Effect of intrapulse Raman scattering on broadband amplitude noise of supercontinuum generated in fiber normal dispersion region

Huifang Ma, Xia Zhang, Qi Jing, Yongqing Huang, and Xiaomin Ren  »View Author Affiliations

Applied Optics, Vol. 51, Issue 12, pp. 1962-1967 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (870 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the generalized stochastic nonlinear Schrödinger equation, the effect of intrapulse Raman scattering (IRS) on broadband amplitude noise of supercontinuum (SC) generated in the normal dispersion regime is investigated numerically. The results show that, in the normal dispersion regime, where the IRS contributes less to the bandwidth of the SC spectrum, the broadband amplitude noise of SC is amplified significantly in the process of SC generation because of the existence of IRS effect. Using fiber with an optimal negative dispersion slope, the IRS effect can be suppressed, and thus the SC amplitude noise is reduced without spectral bandwidth loss.

© 2012 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Nonlinear Optics

Original Manuscript: September 27, 2011
Revised Manuscript: December 21, 2011
Manuscript Accepted: December 30, 2011
Published: April 11, 2012

Huifang Ma, Xia Zhang, Qi Jing, Yongqing Huang, and Xiaomin Ren, "Effect of intrapulse Raman scattering on broadband amplitude noise of supercontinuum generated in fiber normal dispersion region," Appl. Opt. 51, 1962-1967 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000). [CrossRef]
  2. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004). [CrossRef]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]
  4. H. Sotobayashi, W. Chujo, and T. Ozeki, “Wideband tunable wavelength conversion of 10−Gbit/s return-to-zero signals by optical time gating of a highly chirped rectangular supercontinuum light source,” Opt. Lett. 26, 1314–1316 (2001). [CrossRef]
  5. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum,” Electron. Lett. 30, 1166–1168 (1994). [CrossRef]
  6. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003). [CrossRef]
  7. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003). [CrossRef]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  9. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003). [CrossRef]
  10. G. P. Agrawal, “Novel nonlinear phenomena,” in Nonlinear Fiber Optics, 4th ed. (Academic, 2006), pp. 469–477.
  11. G. P. Agrawal, “Pulse propagation in fibers,” in Nonlinear Fiber Optics, 4th ed. (Academic, 2006), pp. 25–46.
  12. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998). [CrossRef]
  13. F. Lu and W. H. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12, 347–353 (2004). [CrossRef]
  14. Y. Chen, W. Xu, H. Cui, W. Chen, and S. Liu, “The effect of fiber dispersion on generation of supercontinuum,” Acta Opt. Sin. 23, 297–301 (2003).
  15. S. Taccheo and K. Ennser, “Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses,” IEEE Photon. Technol. Lett. 14, 1100–1102 (2002). [CrossRef]
  16. J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003). [CrossRef]
  17. B. R. Washburn and N. R. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12, 2166–2175 (2004). [CrossRef]
  18. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003). [CrossRef]
  19. P. D. Drummond and J. F. Corney, “Quantum noise in optical fibers I: stochastic equations,” J. Opt. Soc. Am. B 18, 139–152 (2001). [CrossRef]
  20. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007). [CrossRef]
  21. L. Zheng, X. Zhang, X. Ren, H. Ma, L. Shi, Y. Wang, and Y. Huang, “Dispersion flattened photonic crystal fiber with high nonlinearity for supercontinuum generation at 1.55 µm,” Chin. Opt. Lett. 9, 040601 (2011).
  22. D. Schadt and B. Jaskorzynska, “Suppression of the Raman self-frequency shift by cross-phase modulation,” J. Opt. Soc. Am. B 5, 2374–2378 (1988). [CrossRef]
  23. A. S. Gouveia-Neto, A. S. Gomes, and J. R. Taylor, “Suppression and manipulation of the soliton self-frequency shift,” Opt. Lett. 14, 514–516 (1989). [CrossRef]
  24. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003). [CrossRef]
  25. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995). [CrossRef]
  26. P. K. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited