OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 1968–1975

Partially light-controlled imager based on liquid crystal plate and image intensifier for aurora and airglow measurement

Yuanhe Tang, Xiangang Cao, Hanchen Liu, G. G. Shepherd, Shulin Liu, Haiyang Gao, Xusan Yang, Yong Wu, and Shuiwei Wang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 12, pp. 1968-1975 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (737 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In order to obtain information both of aurora and airglow in one image by the same detector, a PLCI based on liquid crystal plate LCP and super second-generation image intensifier SSGII is proposed in this research. The detection thresholds of the CCD for aurora and airglow are calculated. For the detectable illumination range of 10 4 10 2 lx , the corresponding electron count is 1.57 × 10 5 0.2 for every pixel of CCD. The structure and work principle of the PLCI are described. An LC is introduced in the front of CCD to decrease the intensities of aurora in overexposure areas by means of controlling transmittances pixel by pixel, while an image intensifier is set between the LC and CCD to increase the intensity of the weak airglow. The modulation transfer function MTF of this system is calculated as 0.391 at a Nyquist frequency of 15 lp / mm . The curve of transmittance with regard to gray level for the LC is obtained by calibration experiment. Based on the design principle, the prototype is made and used to take photos of objects under strong light greater than 2 × 10 5 lx . The clear details of “西安理工大学XauT” presented in the image indicate that the PLCI can greatly improve the imaging quality. The theoretical calculations and experiment results prove that this device can extend the dynamic range and it provides a more effective method for upper atmospheric wind measurement.

© 2012 Optical Society of America

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(230.3720) Optical devices : Liquid-crystal devices
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: October 11, 2011
Revised Manuscript: December 9, 2011
Manuscript Accepted: December 13, 2011
Published: April 20, 2012

Yuanhe Tang, Xiangang Cao, Hanchen Liu, G. G. Shepherd, Shulin Liu, Haiyang Gao, Xusan Yang, Yong Wu, and Shuiwei Wang, "Partially light-controlled imager based on liquid crystal plate and image intensifier for aurora and airglow measurement," Appl. Opt. 51, 1968-1975 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. G. Shepherd, Spectral Imaging of the Atmosphere(Academic, 2002).
  2. G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowr, J. Ohet, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII: The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10725–10750 (1993). [CrossRef]
  3. C. C. Fang, T. D. Cheng, J. T. Yeh, K.-C. Wu, and C. K. Lee, “Continuous numerical aperture properties of a cylindrically polarized light illuminated sub-wavelength annular aperture,” Opt. Express 17, 13646–13653 (2009). [CrossRef]
  4. L. X. Jin, Z. M. Lv, and J. W. Xiong, “Automatic light adjusting system of CCD video camera,” Opt. Precis. Eng. 10, 588–591 (2002).
  5. N. Stojanovic and T. Kupfer, “On the design of AGC circuits in IM-DD NRZ optical transmission systems,” J. Lightwave Technol. 26, 3426–3433 (2008). [CrossRef]
  6. S. Mann and R. W. Picard, “On being ‘undigital’ with digital cameras: Extending dynamic range by combining differently exposed pictures,” Science 323, 422–428 (1995).
  7. S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and J. Bogaerts, “A logarithmic response CMOS image sensor with on-chip calibration,” IEEE J. Solid-State Circuits 35, 1146–1152 (2000). [CrossRef]
  8. http://www.dpreview.com/news/0809/08092210fujifilmEXR.asp (2008).
  9. S. I. Sargoytchev, S. Brown, B. H. Solheim, Y. M. Cho, G. G. Shepherd, and M. J. López-González, “Spectral airglow temperature imager (SATI): a ground-based instrument for the monitoring of mesosphere temperature,” Appl. Opt. 43, 5712–5721 (2004). [CrossRef]
  10. W. E. Ward, A. Power, J. Langille, W. A. Gault, I. Miller, and A. Scott, “The waves Michelson interferometer (WaMI): a Doppler imager for the dynamics of the mesosphere and lower thermosphere,” in 37th COSPAR Scientific Assembly (2008), pp. 3424–3432.
  11. Y. H. Tang, R. X. Zhang, H. Y. Gao, K. Liu, G. X. Zhao, X. S. Yang, Q. Li, Y. Liang, N. Ye, H. C. Liu, and S. L. Liu, “Partially light-controlled imaging system based on high temperature poly-silicon thin film transistor-liquid crystal display,” Opt. Express 18, 10616–10626 (2010). [CrossRef]
  12. H. Y. Gao, Y. H. Tang, D. X. Hua, L. Qin, and C. Zhu, “Modified super-wide-angle Sagnac imaging interferometer based on LCoS for atmospheric wind measurement,” J. Quant. Spectrosc. Radiat. Transfer 112, 268–276 (2011). [CrossRef]
  13. H. Y. Gao, Y. H. Tang, D. X. Hua, and H. C. Liu, “Study on the wide-angle Michelson interferometer with large air gap,” Appl. Opt. 50, 5655–5661 (2011). [CrossRef]
  14. G. X. Zhao, Y. H. Tang, K. Liu, H. C. Liu, H. Y. Gao, R. X. Zhang, Y. Liang, Q. Li, X. S. Yang, and N. Ye, “Enhancement latitude of civil digital photography system by liquid crystal,” Proc. SPIE 7279, 72791Y (2009).
  15. http://www.egc.com/useful_info_lighting.php .
  16. H. H. Zwick and G. G. Shepherd, “Upper atmospheric temperatures from Doppler line widths-V. Auroral electron energy spectra and fluxes deduced from the 5577 and 6300 A atomic oxygen emissions,” Planet. Space Sci. 21, 605–621 (1973). [CrossRef]
  17. Y. H. Tang, Q. J. Jia, Q. Qin, X. D. Duan, O. Y. Qu, X. G. Cao, and P. Tong, “Aurora intensity conversion and distribution simulation,” Mater. Sci. Forum 663–665, 340–343 (2010). [CrossRef]
  18. Y. X. Zou, R. K. Zhou, S. L. Yang, and R. H. Sun, “Study of night vision instrument at low light level based on Gen II+ image intensifier (in Chinese),” Infrared Technol. 27, 446–448 (2005).
  19. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005), p. 127.
  20. C. W. Bates, Sparks, and S. D. Sparks, “MTF of a 210-70 mm fiber-optic output x-ray image intensifier tube,” Appl. Opt. 14, 1484–1485 (1975). [CrossRef]
  21. X. S. Yang, Y. H. Tang, K. Liu, H. C. Liu, H. Y. Gao, Q. Li, R. X. Zhang, N. Ye, Y. Liang, and G. X. Zhao, “Modulation transfer function of partial gating detector by liquid crystal auto-controlling light intensity,” Proc. SPIE 7279, 72790Z (2009).
  22. H. Y. Gao, Y. H. Tang, and D. X. Hua, “MTF of magnetic mirror array image intensifier (in Chinese),” Acta Photonica Sin. 39, 1729–1733 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited