OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 1982–1996

Diffractive/refractive (hybrid) UV-imaging system for minimally invasive metrology: design, performance, and application experiments

René Reichle, Christof Pruss, Christopher Gessenhardt, Christof Schulz, and Wolfgang Osten  »View Author Affiliations


Applied Optics, Vol. 51, Issue 12, pp. 1982-1996 (2012)
http://dx.doi.org/10.1364/AO.51.001982


View Full Text Article

Enhanced HTML    Acrobat PDF (2205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hybrid imaging system was developed to enable the application of laser-based measurement techniques like UV laser-induced fluorescence in near-production engines with small access ports. For this task, wide-angle characteristics and high lens speed are required in combination with small engine-bound optics able to survive in harsh environmental conditions. Our approach combines a simple and robust access lens with refractive/diffractive (hybrid) imaging stages away from the engine that are customized for individual wavelength bands. We give a detailed insight into the design strategy, including the integration of diffractive optics and the performance of the system with analysis of the modulation transfer function (MTF), lens speed, and stray light. Finally, results from applications in an actual engine are shown.

© 2012 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(220.1000) Optical design and fabrication : Aberration compensation
(220.3620) Optical design and fabrication : Lens system design
(220.4830) Optical design and fabrication : Systems design
(220.4840) Optical design and fabrication : Testing
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 22, 2011
Manuscript Accepted: December 28, 2011
Published: April 12, 2012

Citation
René Reichle, Christof Pruss, Christopher Gessenhardt, Christof Schulz, and Wolfgang Osten, "Diffractive/refractive (hybrid) UV-imaging system for minimally invasive metrology: design, performance, and application experiments," Appl. Opt. 51, 1982-1996 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-12-1982


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988). [CrossRef]
  2. Y. Yoon, “Design and tolerancing of achromatic and anastigmatic diffractive-refractive lens systems compared with equivalent conventional lens systems,” Appl. Opt. 39, 2551–2558 (2000). [CrossRef]
  3. D. A. Buralli and G. M. Morris, “Design of a wide field diffractive landscape lens,” Appl. Opt. 28, 3950–3959 (1989). [CrossRef]
  4. D. A. Buralli and G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151 (1991). [CrossRef]
  5. D. A. Buralli and G. M. Morris, “Design of two- and three-element diffractive Keplerian telescopes,” Appl. Opt. 31, 38–43 (1992). [CrossRef]
  6. M. V. R. K. Murty, “Spherical zone-plate diffraction grating,” J. Opt. Soc. Am. 50, 923 (1960). [CrossRef]
  7. W. A. Kleinhans, “Aberrations of curved zone plates and Fresnel lenses,” Appl. Opt. 16, 1701–1704 (1977). [CrossRef]
  8. N. Bokor and N. Davidson, “Aberration-free imaging with an aplanatic curved diffractive element,” Appl. Opt. 40, 5825–5829 (2001). [CrossRef]
  9. M. Häfner, R. Reichle, C. Pruss, and W. Osten, “A direct laser writing system for the fabrication of diffractive structures on curved substrates,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2452.
  10. R. Reichle, M. Häfner, C. Pruß, and W. Osten, “Diffraktive Strukturen auf gekrümmten Oberflächen für hybride Abbildungssysteme (Diffractive structures on curved surfaces for hybrid imaging systems),” Photonik 4, 36–40(2010).
  11. J. C. Wyant and V. P. Bennett, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972). [CrossRef]
  12. D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992). [CrossRef]
  13. M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34, 2452 (1995). [CrossRef]
  14. W. Knapp, G. Blough, K. Khajurivala, R. Michaels, B. Tatian, and B. Volk, “Optical design comparison of 60 degrees eyepieces: one with a diffractive surface and one with aspherics,” Appl. Opt. 36, 4756–4760 (1997). [CrossRef]
  15. Z. Yun, Y. Lam, Y. Zhou, X. Yuan, L. Zhao, and J. Liu, “Eyepiece design with refractive-diffractive hybrid elements,” Proc. SPIE 4093, 474–480 (2000). [CrossRef]
  16. R. Brunner, “Diffractive-refractive hybrid microscope objective for 193-nm inspection systems,” Proc. SPIE 5177, 9–15 (2003). [CrossRef]
  17. T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DMA2.
  18. M. Haefner, C. Pruss, and W. Osten, “Laser direct writing of rotationally symmetric high-resolution structures,” Appl. Opt. 50, 5983–5989 (2011). [CrossRef]
  19. C. Pruss, R. Reichle, and W. Osten, “Realistic modeling of diffractive optical elements,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2444.
  20. R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, F. Zimmermann, and C. Schulz, “Hybrid excitation and imaging optics for minimal invasive multiple-band UV-LIF-measurements in engines,” in VDI-Berichte (VDI Verlag GmbH, 2006), Vol. 1959, pp. 223–235.
  21. J. Wolfrum, T. Dreier, V. Ebert, and C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2118–2148.
  22. M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99–124 (2007). [CrossRef]
  23. C. Espey and J. E. Dec, “Diesel engine combustion studies in a newly designed optical access engine using high-speed visualization and 2-D laser imaging,” SAE Technical Paper Series 930971 (1993).
  24. Product-Manual UV Camera Endoscope Item No. 1108450 (La Vision GmbH, 2003).
  25. M. Richter, B. Axelsson, and M. Aldén, “Engine diagnostics using laser induced fluorescence signals collected through an endoscopic detection system,” SAE Technical Paper Series 982465 (1998).
  26. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Proc. Combust. Inst. 31, 75–121 (2005).
  27. W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005). [CrossRef]
  28. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004). [CrossRef]
  29. D. Frieden, V. Sick, J. Gronki, and C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 75, 137–141 (2002). [CrossRef]
  30. M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008). [CrossRef]
  31. R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “Fiber optic spark plug sensor for UV-LIF measurements close to the ignition spark,” Proc. SPIE 5856, 158–168 (2005). [CrossRef]
  32. T. H. Tomkinson, J. L. Bentley, M. K. Crawford, C. J. Harkrider, D. T. Moore, and J. L. Rouke, “Rigid endoscopic relay systems: a comparative study,” Appl. Opt. 35, 6674 (1996). [CrossRef]
  33. M. J. Kidger, Fundamental Optical Design (SPIE, 2002).
  34. C. Pruss, “Performance improvement of CGHs for optical testing,” Proc. SPIE 5144, 460–471 (2003). [CrossRef]
  35. V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45, 53–62 (2006). [CrossRef]
  36. G. D. Boreman and S. Yang, “Modulation transfer function measurement using three- and four-bar targets,” Appl. Opt. 34, 8050–8052 (1995). [CrossRef]
  37. R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in Online Proceedings DGaO (DGaO, 2006).
  38. C. Gessenhardt, F. Zimmermann, C. Schulz, R. Reichle, C. Pruss, and W. Osten, “Hybrid endoscopes for laser-based imaging diagnostics in IC engines,” SAE Technical Paper Series 2009–01–0655 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited