OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 2035–2044

Retrieval of aerosol extinction coefficient profiles from Raman lidar data by inversion method

Pornsarp Pornsawad, Giuseppe D’Amico, Christine Böckmann, Aldo Amodeo, and Gelsomina Pappalardo  »View Author Affiliations


Applied Optics, Vol. 51, Issue 12, pp. 2035-2044 (2012)
http://dx.doi.org/10.1364/AO.51.002035


View Full Text Article

Enhanced HTML    Acrobat PDF (640 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We regard the problem of differentiation occurring in the retrieval of aerosol extinction coefficient profiles from inelastic Raman lidar signals by searching for a stable solution of the resulting Volterra integral equation. An algorithm based on a projection method and iterative regularization together with the L-curve method has been performed on synthetic and measured lidar signals. A strategy to choose a suitable range for the integration within the framework of the retrieval of optical properties is proposed here for the first time to our knowledge. The Monte Carlo procedure has been adapted to treat the uncertainty in the retrieval of extinction coefficients.

© 2012 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar
(100.3190) Image processing : Inverse problems
(280.1100) Remote sensing and sensors : Aerosol detection
(290.2200) Scattering : Extinction

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 31, 2011
Revised Manuscript: January 4, 2012
Manuscript Accepted: January 12, 2012
Published: April 16, 2012

Citation
Pornsarp Pornsawad, Giuseppe D’Amico, Christine Böckmann, Aldo Amodeo, and Gelsomina Pappalardo, "Retrieval of aerosol extinction coefficient profiles from Raman lidar data by inversion method," Appl. Opt. 51, 2035-2044 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-12-2035


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. L. Denman, G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P. L. da Silva Dias, S. C. Wofsy, and X. Zhang, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University, 2007), pp. 499–587.
  2. A. Ansmann and D. Müller, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005), pp. 105–142.
  3. L. Smullin and G. Fiocco, “Optical echoes from the moon,” Nature 194, 1267 (1962). [CrossRef]
  4. G. Fiocco and L. D. Smullin, “Detection of scattering layers in the upper atmosphere by optical radar,” Nature 199, 1275–1276 (1963). [CrossRef]
  5. G. S. Tyndall, D. M. Winker, T. I. Anderson, and F. I. Eisele, Atmospheric Chemistry in a Changing World: an Integration and Synthesis of a Decade of Tropospheric Chemistry Research (Springer, 2003), pp. 157–184.
  6. J. Bösenberg, V. Matthias, A. Amodeo, V. Amoridis, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlsson, A. Chaikovsky, G. Chourdakis, A. Comeron, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, A. Mekler, I. Mironova, V. Mitev, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. M. Persson, D. P. Resendes, V. Rizi, F. Rocadenbosch, J. A. Rodrigues, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewski, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “Earlinet: a European aerosol research lidar network to establish an aerosol climatology,” Rep. 348 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2003).
  7. V. Matthais, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, J. Bösenberg, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. D. Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodrigues, U. Wandinger, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43, 961–976 (2004). [CrossRef]
  8. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. D. Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977–989 (2004). [CrossRef]
  9. C. Böckmann and G. Pappalardo, “Report on the inter-comparison of algorithms for new stations” (personal communication, 2007).
  10. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. D. Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt. 43, 5370–5385 (2004). [CrossRef]
  11. A. Amodeo, I. Mattis, C. Böckmann, G. D’Amico, D. Müller, L. Osterloh, A. Chaikovsky, G. Pappalardo, A. Ansmann, A. Apituley, L. Alados-Arboledas, D. Balis, A. Comeron, V. Freudenthaler, V. Mitev, D. Nicolae, A. Papayannis, M. R. Perrone, A. Pietruczuk, M. Pujadas, J.-P. Putaud, F. Ravetta, V. Rizi, V. Simeonov, N. Spinelli, K. Stebel, D. Stoyanov, T. Trickl, and M. Wiegner, “Optimization of lidar data processing: a goal of the EARLINET-ASOS project,” Proc. SPIE 6750, 67500F (2007).
  12. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef]
  13. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef]
  14. P. Pornsawad, C. Böckmann, C. Ritter, and M. Rafler, “Ill-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization,” Appl. Opt. 47, 1649–1661 (2008). [CrossRef]
  15. V. Shcherbakov, “Regularized algorithm for Raman lidar data processing,” Appl. Opt. 46, 4879–4889 (2007). [CrossRef]
  16. C. Böckmann and P. Pornsawad, “Iterative Runge–Kutta-type methods for nonlinear ill-posed problems,” Inverse Problems 24, 025002 (2008). [CrossRef]
  17. G. M. Vainikko, “Error estimates of the successive approximation method for ill-posed problems,” Autom. Remote Control 40, 356–363 (1980).
  18. M. N. Özisik and H. Orlande, Inverse Heat Transfer: Fundamentals and Applications (Taylor & Francis, 2000).
  19. P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34, 561–580 (1992). [CrossRef]
  20. N. K. Bose, B. Buchberger, and J. P. Guiver, Multidimensional Systems Theory and Applications (Kluwer Academic, 2003), Vol. 2.
  21. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B: Laser. Opt. 55, 18–28 (1992). [CrossRef]
  22. D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, E. W. Eloranta, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, and F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001). [CrossRef]
  23. U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998). [CrossRef]
  24. J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998). [CrossRef]
  25. G. Pappalardo, A. Amodeo, S. Amoruso, L. Mona, M. Pandolfi, and V. Cuomo, “One year of tropospheric lidar measurements of aerosol extinction and backscatter,” Ann. Geophys. 46, 401–413 (2003).
  26. J. E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd ed. (Springer, 2003).
  27. P. Brandimarte, Numerical Methods in Finance: a MATLAB-Based Introduction (Wiley, 2002).
  28. W. J. Kennedy and J. E. Gentle, Statistical Computing (CRC, 1980), Vol. 33.
  29. W. Menke, Geophysical Data Analysis: Discrete Inversion Theory (Academic, 1989).
  30. D. N. Stacey, “Rayleigh’s legacy to modern physics: high resolution spectroscopy,” Eur. J. Phys. 15, 236–242 (1994).
  31. P. Pornsawad, C. Böckmann, C. Ritter, and M. Rafler, “Ill-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization,” Appl. Opt. 47, 1649–1661 (2008). [CrossRef]
  32. S. V. Samoilova and Y. S. Balin, “Reconstruction of the aerosol optical parameters from the data of sensing with a multifrequency Raman lidar,” Appl. Opt. 47, 6816–6831 (2008). [CrossRef]
  33. F. Madonna, A. Amodeo, A. Boselli, C. Cornacchia, G. D’Amico, A. Giunta, L. Mona, G. Pappalardo, and V. Cuomo, “CIAO: the CNR-IMAA advanced observatory for atmospheric research,” Atmos. Meas. Tech. 4, 1190–1208 (2011).
  34. D. P. Donovan, J. A. Whiteway, and A. I. Carswell, “Correction for nonlinear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited