OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 2098–2106

Reinforced direct bonding of optical materials by femtosecond laser welding

David Hélie, Michael Bégin, Fabrice Lacroix, and Réal Vallée  »View Author Affiliations

Applied Optics, Vol. 51, Issue 12, pp. 2098-2106 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (674 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A process for reinforcing a direct bond between optical materials using femtosecond laser welding is presented. As a side benefit, the optical transmission properties of the joined components are shown not to be altered by the joining process. The joints exhibits higher shear breakage loads, yielding a maximum measured joint strength of 5.25 MPa for an applied load of 75 kg in fused silica. The laser sealing of direct bonds between dissimilar materials improves their resistance to thermal shocks. Direct bonds sealed by a circular weld seam can withstand thermal shocks at temperatures at least twice as great as nonreinforced direct bonds. The combination of ultrashort laser welding and direct bonding provides an innovative joining method that benefits from the advantages of both contributing physical processes.

© 2012 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.2750) Materials : Glass and other amorphous materials
(220.4610) Optical design and fabrication : Optical fabrication
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 2, 2011
Revised Manuscript: February 27, 2012
Manuscript Accepted: February 27, 2012
Published: April 18, 2012

David Hélie, Michael Bégin, Fabrice Lacroix, and Réal Vallée, "Reinforced direct bonding of optical materials by femtosecond laser welding," Appl. Opt. 51, 2098-2106 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Haisma and G. A. C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. R 37, 1–60 (2002). [CrossRef]
  2. J. Haisma, N. Hattu, J. T. Pulles, E. Steding, and J. C. Vervest, “Direct bonding and beyond,” Appl. Opt. 46, 6793–6803 (2007). [CrossRef]
  3. J. Haisma, G. A. C. M. Spierings, T. M. Michielson, and C. L. Adema, “Surface preparation and phenomenological aspects of direct bonding,” Philips J. Res. 49, 23–46 (1995). [CrossRef]
  4. J. Haisma, C. L. Alting, and T. M. Michielsen, “Method of manufacturing a semiconductor device,” U.S. patent 5,009,689 (23 May 1991).
  5. D. I. Pomerantz, “Anodic bonding,” U.S. patent 3,397,278 (13 August 1968).
  6. K. Itoh and T. Tamaki, “Substance joining method, substance joining device, joined body, and its manufacturing method,” U.S. patent 2010/0047587 (25 February 2010).
  7. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, L687–L689 (2005). [CrossRef]
  8. J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” App. Phys. Let. 89, 021106 (2006). [CrossRef]
  9. W. Watanabe, T. Tamaki, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10468–10476 (2006). [CrossRef]
  10. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005). [CrossRef]
  11. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep. 441, 47–189 (2007).
  12. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001). [CrossRef]
  13. K. Cvecek, L. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultra short laser pulses yields higher seam strength,” Appl. Opt. 50, 1941–1944 (2011). [CrossRef]
  14. I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phy. Proc. 5, 483–493(2010). [CrossRef]
  15. S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultrashort laser pulses,” Proc. SPIE 7920, 792006 (2011). [CrossRef]
  16. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao. “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996). [CrossRef]
  17. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225(2008). [CrossRef]
  18. D. Helie, F. Lacroix, and R. Vallée, “Optical bonding reinforced by femtosecond laser welding,” Proc. SPIE 8126, 812612 (2011). [CrossRef]
  19. A. Horn, I. Mingareev, J. Gottmann, A. Werth, and U. Brenk, “Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation,” Meas. Sci. Technol. 19, 015302 (2008). [CrossRef]
  20. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2, 57–63 (2007). [CrossRef]
  21. I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007). [CrossRef]
  22. S. Richter, S. Döring, A. Tünnermann, and S. Nolte,” Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited