OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 2135–2149

Notes on Rayleigh scattering in lidar signals

Mariana Adam  »View Author Affiliations


Applied Optics, Vol. 51, Issue 12, pp. 2135-2149 (2012)
http://dx.doi.org/10.1364/AO.51.002135


View Full Text Article

Enhanced HTML    Acrobat PDF (1324 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Classical and quantum formulations are used to estimate Rayleigh scattering within lidar signals. Within the classical approach, three scenarios are used to characterize atmospheric molecular composition: 2-component atmosphere (N2 and O2), 4-component atmosphere (N2, O2, Ar, and CO2), and 5-component atmosphere (N2, O2, Ar, CO2, and water vapor). First, analysis focuses on Rayleigh scattering, showing the relative difference between the three scenarios within classical approach. The relative difference in molecular scattering between 2(4)-component atmosphere and 5-component atmosphere is below 1%. The second analysis focuses on the lidar retrieval of aerosol backscatter and extinction coefficients showing the effect of different molecular formulations. A relative difference of ±3% was found between the molecular formulation of 2-component atmosphere and the molecular formulation of 5-component atmosphere. Consideration of the Raman rotational lines blocked by the interference filter is important for the elastic channels, but of little significance in the N2 Raman channel. For lidar retrieval of aerosol profiles, the 5-component approximation is the best when the water vapor profile is known, but 2-component is still adequate and quite accurate when water vapor is only poorly known.

© 2012 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 15, 2011
Revised Manuscript: February 9, 2012
Manuscript Accepted: February 17, 2012
Published: April 20, 2012

Citation
Mariana Adam, "Notes on Rayleigh scattering in lidar signals," Appl. Opt. 51, 2135-2149 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-12-2135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Freudenthaler, Meteorological Institut of the Munich University, Germany (personal communication, 2010).
  2. A. T. Young, “Rayleigh scattering,” Phys. Today 35(1), 42–48 (1982). [CrossRef]
  3. D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984). [CrossRef]
  4. C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001). [CrossRef]
  5. R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001). [CrossRef]
  6. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999). [CrossRef]
  7. W. L. Eberhard, “Correct equations and common approximations for calculating Rayleigh scatter in pure gases and mixtures and evaluation of differences,” Appl. Opt. 49, 1116–1130 (2010). [CrossRef]
  8. V. Tomasi, V. Vitale, B. Petkov, A. Lupi, and A. Cacciari, “Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres,” Appl. Opt. 44, 3320–3341 (2005). [CrossRef]
  9. L. V. King, “On the complex anisotropic molecule in relation to the dispersion and scattering of light,” Proc. R. Soc. London Ser. A104, 333–357 (1923).
  10. M. Adam, “Notes on temperature-dependent lidar equations,” J. Atmos. Ocean. Technol. 26, 1021–1039 (2009). [CrossRef]
  11. K. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966). [CrossRef]
  12. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996). [CrossRef]
  13. M. L. Salby, Fundamentals of Atmospheric Physics (Academic, 1996).
  14. K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009). [CrossRef]
  15. U. Wandinger, “Raman lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241–272.
  16. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef]
  17. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef]
  18. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef]
  19. D. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999). [CrossRef]
  20. T. Sakai, T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, “Comparisons of Raman lidar measurement of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan,” J. Atmos. Ocean. Technol. 24, 1407–1423(2007). [CrossRef]
  21. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009). [CrossRef]
  22. M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010). [CrossRef]
  23. N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).
  24. M. Adam, “Notes on Rayleigh scattering in lidar signals,” 25th ILRC, St. Petersburg, Russia (2010), paper S01O-05.
  25. A. Wexler, “Vapor pressure formulation for water in the range 0 to 100 °C. A revision,” J. Res. Natl. Bur. Stand. 80A, 775–785 (1976).
  26. A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. A 259, 424–429 (1960). [CrossRef]
  27. A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9, 432–434 (1973). [CrossRef]
  28. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773(1995). [CrossRef]
  29. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadembosch, J. A. Rodriguez, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977–989 (2004). [CrossRef]
  30. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt. 43, 5370–5385 (2004). [CrossRef]
  31. A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere,” C. Weitkamp, ed. (Springer, 2005), pp. 273–305.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited