OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 51, Iss. 12 — Apr. 20, 2012
  • pp: 2164–2171

Titanium dioxide nanoparticle based optical fiber humidity sensor with linear response and enhanced sensitivity

R. Aneesh and Sunil K. Khijwania  »View Author Affiliations


Applied Optics, Vol. 51, Issue 12, pp. 2164-2171 (2012)
http://dx.doi.org/10.1364/AO.51.002164


View Full Text Article

Enhanced HTML    Acrobat PDF (669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical fiber humidity sensor employing an in-house scaled TiO2-nanoparticle doped nanostructured thin film as the fiber sensing cladding and evanescent wave absorption is reported. The main objective of the present work is to achieve a throughout-linear sensor response with high sensitivity, possibly over a wide dynamic range using the simplest possible sensor geometry. In order to realize this, first, the nanostructured sensing film is synthesized over a short length of a centrally decladded straight and uniform optical fiber and then a comprehensive experimental investigation is carried out to optimize the design configuration/parameters of the nanostructured sensing film and to achieve the best possible sensor response. Much improved sensitivity of 27.1mV/%RH is observed for the optimized sensor along with a throughout-linear sensor response over a dynamic range as wide as 24% to 95%RH with an average response time of 0.01 s for humidification and 0.06 s for desiccation. In addition, the sensor exhibits a very good degree of reversibility and repeatability.

© 2012 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 5, 2011
Revised Manuscript: November 25, 2011
Manuscript Accepted: December 21, 2011
Published: April 20, 2012

Citation
R. Aneesh and Sunil K. Khijwania, "Titanium dioxide nanoparticle based optical fiber humidity sensor with linear response and enhanced sensitivity," Appl. Opt. 51, 2164-2171 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-12-2164


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fiber-optic sensor technologies for humidity and moisture measurement,” Sensors Actuators A 144, 280–295 (2008). [CrossRef]
  2. Z. M. Rittersma, “Recent achievements in miniaturised humidity sensors—a review of transduction techniques,” Sensors Actuators A 96, 196–210 (2002). [CrossRef]
  3. F. T. S. Yu and S. Yin, Fiber Optic Sensors (Marcel Dekker, 2002).
  4. F. Mitschke, “Fiber-optic sensor for humidity,” Opt. Lett. 14, 967–969 (1989). [CrossRef]
  5. T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sensors Actuators B 39, 272–276 (1997). [CrossRef]
  6. S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sensors Actuators B 53, 91–96 (1998). [CrossRef]
  7. S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003). [CrossRef]
  8. A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE J. Sens. 3, 806–811 (2003). [CrossRef]
  9. A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004). [CrossRef]
  10. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sensors Actuators B 104, 217–222 (2005). [CrossRef]
  11. J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sensors Actuators B 122, 442–449 (2007). [CrossRef]
  12. A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sensors Actuators B 129, 106–112 (2008). [CrossRef]
  13. S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sensors Actuators B 147, 385–391 (2010). [CrossRef]
  14. C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity sensing using plastic optical fiber,” Microw. Opt. Technol. Lett. 43, 387–390 (2004). [CrossRef]
  15. K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors Actuators B 110, 335–341 (2005). [CrossRef]
  16. Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007). [CrossRef]
  17. D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009). [CrossRef]
  18. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sensors Actuators B 110, 148–156 (2005). [CrossRef]
  19. X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sensors Actuators B 127, 518–524 (2007). [CrossRef]
  20. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999). [CrossRef]
  21. J. J. Frioiat, A. Jelli, G. Poncelet, and J. Andre, “Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas,” J. Phys. Chem. 69, 2185–2197 (1965). [CrossRef]
  22. J. H. Anderson and G. A. Parks, “Electrical properties of silica-gel in the presence of adsorbed water,” J. Phys. Chem. 723662–3668 (1968). [CrossRef]
  23. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152, 259–262 (1998). [CrossRef]
  24. C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors Actuators B 69, 127–131 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited