Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Color separation of high-density dielectric rectangular grating in the Fresnel diffraction region

Not Accessible

Your library or personal account may give you access

Abstract

A high-density dielectric rectangular grating is designed for color separation in a Fresnel diffraction field. The Fresnel field distribution is analyzed and the optimization conditions for color separation are given. The process of the modes propagating and energy exchanging with the diffraction orders are expressed by modal method. The color separation for different polarizations can be realized. The energy efficiency is 96.3% at the 633 nm wavelength and 86.9% at the 488 mm wavelength for both TE polarizations, while the energy efficiency is theoretically 96.3% at the 633 nm wavelength for TE polarization and 90.6% at the 488 nm wavelength for TM polarization. The field distributions are scanned by the near-field scanning optical microscopy, and the efficiency is 71.2% for the 633 nm wavelength and 67.3% for the 488 nm wavelength for both TE polarizations experimentally.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-step resonant diffraction grating designed for three-color separation in Fresnel diffraction region

Qiaofeng Tan, Qixia Wang, Yue Fang, Huarong Gu, and Guofan Jin
Appl. Opt. 53(29) 6920-6924 (2014)

Design of highly efficient transmission gratings with deep etched triangular grooves

Xufeng Jing, Junchao Zhang, Shangzhong Jin, Pei Liang, and Ying Tian
Appl. Opt. 51(33) 7920-7933 (2012)

Polarization-independent wideband mixed metal dielectric reflective gratings

Anduo Hu, Changhe Zhou, Hongchao Cao, Jun Wu, Junjie Yu, and Wei Jia
Appl. Opt. 51(20) 4902-4906 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved