OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 13 — May. 1, 2012
  • pp: 2230–2235

Theoretical explanation of enhanced low dose rate sensitivity in erbium-doped optical fibers

Olivier Gilard, Jérémie Thomas, Laurent Troussellier, Mikhael Myara, Philippe Signoret, Ekaterina Burov, and Michel Sotom  »View Author Affiliations

Applied Optics, Vol. 51, Issue 13, pp. 2230-2235 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new theoretical framework is proposed to explain the dose and dose-rate dependence of radiation-induced absorption in optical fibers. A first-order dispersive kinetics model is used to simulate the growth of the density of color centers during an irradiation. This model succeeds in explaining the enhanced low dose rate sensitivity observed in certain kinds of erbium-doped optical fiber and provides some insight into the physical reasons behind this sensitivity.

© 2012 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2410) Fiber optics and optical communications : Fibers, erbium
(350.5610) Other areas of optics : Radiation
(350.6090) Other areas of optics : Space optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 10, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 6, 2012
Published: April 24, 2012

Olivier Gilard, Jérémie Thomas, Laurent Troussellier, Mikhael Myara, Philippe Signoret, Ekaterina Burov, and Michel Sotom, "Theoretical explanation of enhanced low dose rate sensitivity in erbium-doped optical fibers," Appl. Opt. 51, 2230-2235 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Morita and W. Kawakami, “Dose rate effect on radiation induced attenuation of pure silica core optical fibres,” IEEE Trans. Nucl. Sci. 36, 584–590 (1989). [CrossRef]
  2. D. L. Griscom, M. E. Gingerich, and J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993). [CrossRef]
  3. G. M. Williams, B. M. Wright, W. D. Mack, and J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
  4. V. A. Mashkov, W. R. Austin, L. Zhang, and R. G. Leisure, “Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2,” Phys. Rev. Lett. 76, 2926–2929 (1996). [CrossRef]
  5. D. L. Griscom, “Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: Application to color centers in silica-based optical fibers,” Phys. Rev. B 64, doc. ID 174201 (2001).
  6. P. Borgermans and B. Brichard, “Kinetic models and spectral dependencies of the radiation-induced attenuation in pure silica fibers,” IEEE Trans. Nucl. Sci. 49, 1439–1445 (2002). [CrossRef]
  7. B. D. Evans and G. H. Sigel, “Radiation resistant fiber optic materials and waveguides,” IEEE Trans. Nucl. Sci. 22, 2462–2467 (1975). [CrossRef]
  8. E. J. Friebele, K. Long, C. Askins, M. Gingerich, M. Marrone, and D. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–88 (1985).
  9. H. Henschel and E. Baumann, “Effect of natural radioactivity on optical fibers of undersea cables,” J. Lightwave Technol. 14, 724–731 (1996). [CrossRef]
  10. M. N. Ott, “Fibre optic cable assemblies for space flight: II. Thermal and radiation effects,” Proc. SPIE 3440, 37–46 (1998).
  11. S. Girard, J. Baggio, and J. Bisutti, “14 MeV neutron, γ-ray, and pulsed x-ray radiation-induced effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 53, 3750–3757 (2006). [CrossRef]
  12. E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119 (2007). [CrossRef]
  13. T. Wijnands, L. K. De Jonge, J. Kuhnhenn, S. K. Hoeffgen, and U. Weinand, “Optical absorption in commercial single mode optical fibers in a high energy physics radiation field,” IEEE Trans. Nucl. Sci. 55, 2216–2222 (2008). [CrossRef]
  14. B. Brichard, A. Fernandez Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effect in erbium-doped fibers for space gyroscopes,” in OFS-16: 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information and Communication Engineers, 2003), pp. 336–339.
  15. J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.
  16. O. Gilard, M. Caussanel, H. Duval, G. Quadri, and F. Reynaud, “New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses,” J. Appl. Phys. 108, doc. ID 093115 (2010). [CrossRef]
  17. A. Plonka, Dispersive Kinetics (Kluwer, 2001).
  18. J. Boch, F. Saigné, R. D. Schrimpf, J. R. Vaillé, L. Dusseau, and E. Lorfèvre, “Physical model for the low-dose-rate effect in bipolar devices,” IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006). [CrossRef]
  19. J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006). [CrossRef]
  20. T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited