OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 13 — May. 1, 2012
  • pp: 2250–2256

Quasi-phase-matched intracavity laser frequency summation

Rena J. Kasumova  »View Author Affiliations

Applied Optics, Vol. 51, Issue 13, pp. 2250-2256 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The work presents a theoretical analysis of quasi-phase-matched intracavity interaction in the constant-intensity approximation at frequencies summing with simultaneous regard for the losses and phases of interacting waves. An analytical expression for optimum correlation between interacting waves has been received. It is shown that, by the choice of optimum values of phase mismatch, pump intensity, and phase relationship, it is possible considerably to increase conversion efficiency in comparison with the noncavity case. The numerical estimation of expected conversion efficacy in conditions of an experiment is presented.

© 2012 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Original Manuscript: October 3, 2011
Revised Manuscript: December 9, 2011
Manuscript Accepted: January 17, 2012
Published: April 25, 2012

Rena J. Kasumova, "Quasi-phase-matched intracavity laser frequency summation," Appl. Opt. 51, 2250-2256 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. D. Laptev and A. A. Novikov, “Intracavity quasi-phase matched frequency self conversion of optical radiation in Nd:Mg:LiNbO3 crystal with regular domain structures,” Quantum Electron. 31, 981–986 (2001). [CrossRef]
  2. N. I. Kravtsov, G. D. Laptev, I. I. Naumov, A. A. Novikov, V. V. Firsov, and A. S. Chirkin, “Intracavity quasi-phase matched frequency summing in a laser based on a periodically poled active nonlinear Nd:Mg:LiNbO3 crystal,” Quantum Electron. 32, 923–924 (2002). [CrossRef]
  3. G. D. Laptev, A. A. Novikov, and A. S. Chirkin, “Interaction of light waves in active nonlinear and periodically poled nonlinear crystals,” JETP Lett. 78, 38–50 (2003). [CrossRef]
  4. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal,” Opt. Lett. 24, 205–207 (1999). [CrossRef]
  5. Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79, 207–210(2004). [CrossRef]
  6. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  7. T. Y. Fan, A. Gordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 3, 140–148 (1986). [CrossRef]
  8. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale, and M. Chiarini, “Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography,” Opt. Express 11, 392–405(2003). [CrossRef]
  9. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bozenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19–10.71 μm frequency bridge,” Opt. Lett. 22, 1211–1214 (1997). [CrossRef]
  10. F. Brunner, E. Innerhofer, S. V. Marchese, T. Sudmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red–green–blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29, 1921–1923 (2004). [CrossRef]
  11. Q. Ye, I. Shah, J. Eichenhold, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1999). [CrossRef]
  12. Y. Q. Lu, J. J. Zheng, Y. L. Lu, and N. B. Ming, “Spectral properties and quasi-phase-matched second-harmonic generation in a new active medium: optical superlattice Nd:MgO:LiNbO3,” Appl. Phys. B 67, 29–32 (1998). [CrossRef]
  13. A. A. Kaminskii, D. Jaque, S. N. Bagayev, K. Ueda, S. J. Garsia, and J. Capmany, “New nonlinear-laser properties of ferroelectric Nd3+:Ba2NaNb5O15  cw stimulated emission (F3/24−I11/24 and F3/24−I13/24), collinear and diffuse self-frequency doubling and summation,” Quantum Electron. 29, 95–97 (1999). [CrossRef]
  14. C.-L. Wang, K.-H. Lin, T.-M. Hwang, Y.-F. Chen, S.-C. Wang, and C.-L. Pan, “Mode-locked diode-pumped self-frequency-doubling neodymium yttrium aluminum borate laser,” Appl. Opt. 37, 3282–3285 (1998). [CrossRef]
  15. D.-H. Li, P.-X. Li, Z.-G. Zhang, and S.-W. Zhang, “Compact high-power blue light from a diode-pumped intracavity-doubled Nd:YAG laser,” Chin. Phys. Lett. 19, 1632–1634 (2002). [CrossRef]
  16. P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “Self-frequency-doubling ytterbium lasers,” Opt. Commun. 195, 431–436 (2001). [CrossRef]
  17. Z. H. Tagiev and A. S. Chirkin, “Fixed intensity approximation in the theory of nonlinear waves,” Zh. Eksp. Teor. Fiz. 73, 1271–1282 (1977) [Z. H. Tagiev and A. S. Chirkin, “Fixed intensity approximation in the theory of nonlinear waves,” Sov. Phys. JETP 46, 669–680 (1977)].
  18. Z. H. Tagiev, R. J. Kasumova, R. A. Salmanova, and N. V. Kerimova, “Constant-intensity approximation in a nonlinear wave theory,” J. Opt. B 3, 84–87 (2001). [CrossRef]
  19. R. J. Kasumova, “Quasi-phase-matched sum-frequency generation in layered structures,” J. Appl. Spectrosc. 78, 659–667 (2011). [CrossRef]
  20. R. J. Kasumova and A. A. Karimi, “Efficiency of sum frequency generation by regular domain structures,” J. Appl. Spectrosc. 77, 144–147 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited