OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 13 — May. 1, 2012
  • pp: 2277–2281

High-stability erbium-doped photonic crystal fiber source

Xu Wu, Shuang-chen Ruan, Cheng-xiang Liu, and Li Zhang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 13, pp. 2277-2281 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single-pass backward configuration superfluorescent fiber source (SFS) based on erbium-doped photonic crystal fiber (EDPCF) with a high mean wavelength stability was proposed. The EDPCF was used to improve the intrinsic temperature dependence of the SFS. Using the optimal EDPCF length of 24.2 m and pump power of 204 mW, a 20.7 ppm mean wavelength stability of a prototype SFS was demonstrated with increased temperature from 40°C to 60 °C. The mean wavelength had an ultra stability of 10.3 ppm with increased temperature from 20°C to 60 °C.

© 2012 Optical Society of America

OCIS Codes
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(060.2410) Fiber optics and optical communications : Fibers, erbium
(140.6630) Lasers and laser optics : Superradiance, superfluorescence
(140.6810) Lasers and laser optics : Thermal effects
(230.0230) Optical devices : Optical devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 30, 2011
Revised Manuscript: February 9, 2012
Manuscript Accepted: February 18, 2012
Published: April 25, 2012

Xu Wu, Shuang-chen Ruan, Cheng-xiang Liu, and Li Zhang, "High-stability erbium-doped photonic crystal fiber source," Appl. Opt. 51, 2277-2281 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994). [CrossRef]
  2. D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+ doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995). [CrossRef]
  3. L. A. Wang, C. T. Lee, and G. W. You, “Polarized erbium-doped superfluorescent fiber source utilizing double-pass backward configuration,” Appl. Opt. 44, 77–82 (2005).
  4. D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability,” IEEE Photon. Technol. Lett. 13, 25–27 (2001). [CrossRef]
  5. D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000). [CrossRef]
  6. H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilization,” Electron. Lett. 33, 2061–2062 (1997). [CrossRef]
  7. P. Ou, B. Cao, C. X. Zhang, Y. Li, and Y. H. Yang, “Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating,” Electron. Lett. 44, 187–189 (2008). [CrossRef]
  8. A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009). [CrossRef]
  9. A. M. Wang, “High stability Er-doped superfluorescent fiber source improved by incorporating bandpass fiber,” IEEE Photon. Technol. Lett. 23, 227–229 (2011). [CrossRef]
  10. T. Matsui, J. Zhou, and K. Nakajima, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23, 4178–4183 (2005). [CrossRef]
  11. M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746–1756 (2003). [CrossRef]
  12. D. Chen and L. F. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007). [CrossRef]
  13. E. K. Akowuah, H. Ademgil, S. Haxha, and F. A. Malek, “An endlessly single-mode photonic crystal fiber with low chromatic dispersion and bend and rotational insensitivity,” J. Lightwave Technol. 27, 3940–3947 (2009). [CrossRef]
  14. C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004). [CrossRef]
  15. H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004). [CrossRef]
  16. M. Y. Chen and Y. K. Zhang, “Bend insensitive design of large-mode-area microstructured optical fibers,” J. Lightwave Technol. 29, 2216–2222 (2011). [CrossRef]
  17. S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861–865 (2007). [CrossRef]
  18. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007). [CrossRef]
  19. K. Furusawa, T. Kogure, T. M. Monro, and D. J. Richardson, “High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber,” Opt. Express 12, 3452–3458 (2004). [CrossRef]
  20. C. X. Liu, L. Zhang, X. Wu, H. L. Yang, and S. C. Ruan, “Coupling technique of photonic crystal fiber,” Journal of Chinese Inertial Technology 17, 366–369 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited