OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 13 — May. 1, 2012
  • pp: 2400–2406

Theoretical modeling and experiment of refractive index change in He+ ion-implanted KTP waveguide

Jiao-Jian Yin, Fei Lu, Xian-Bing Ming, Zhen-Hua Qin, and Yu-Jie Ma  »View Author Affiliations

Applied Optics, Vol. 51, Issue 13, pp. 2400-2406 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model is presented to explain the refractive index change in the ion-implanted KTP waveguide, which includes respective contributions of spontaneous polarization, molar polarization and molar volume, and photoelastic effect. Numerical calculations of refractive indices along different crystalline orientations (X, Y, and Z) as a function of the lattice damage level, determined by Rutherford back-scattering/channeling technique, are performed based on the results from a set of z-cut KTP crystals implanted by 300 keV He+ ions in doses ranging from 4×1016 to 8×1016ions/cm2. The theoretical results show consistency with the experimental data. To our knowledge, this is the first model to comprehensively describe the ion-implanted KTP planar waveguide.

© 2012 Optical Society of America

OCIS Codes
(160.3380) Materials : Laser materials
(160.4330) Materials : Nonlinear optical materials
(230.7390) Optical devices : Waveguides, planar
(290.1350) Scattering : Backscattering

ToC Category:
Optical Devices

Original Manuscript: October 13, 2011
Revised Manuscript: December 8, 2011
Manuscript Accepted: January 16, 2012
Published: April 27, 2012

Jiao-Jian Yin, Fei Lu, Xian-Bing Ming, Zhen-Hua Qin, and Yu-Jie Ma, "Theoretical modeling and experiment of refractive index change in He+ ion-implanted KTP waveguide," Appl. Opt. 51, 2400-2406 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989). [CrossRef]
  2. X. Gu, M. Makarov, Y. J. Ding, J. B. Khurgin, and W. P. Risk, “Backward second-harmonic and third-harmonic generation in a periodically poled potassium titanyl phosphate waveguide,” Opt. Lett. 24, 127–129 (1999). [CrossRef]
  3. B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003). [CrossRef]
  4. L. Ma, O. Slattery, T. Chang, and X. Tang, “Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide,” Opt. Express 17, 15799–15807 (2009). [CrossRef]
  5. B. Brecht, A. Eckstein, and C. Silberhorn, “Controlling the correlations in frequency upconversion in PPLN and PPKTP waveguides,” Phys. Status Solidi C 8, 1235–1238 (2011). [CrossRef]
  6. A. Eckstein1, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011). [CrossRef]
  7. P. D. Townsen, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
  8. P. Bindner, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558–2560 (2001). [CrossRef]
  9. K. M. Wang, M. Q. Meng, F. Lu, X. Wang, W. Wang, P. J. Ding, and Y. G. Liu, “Analysis of refractive index profile in KTiOPO4 waveguide formed by 3.0 MeV He+ implantation,” Opt. Commun. 134, 55–58 (1997). [CrossRef]
  10. K. M. Wang, W. Li, F. Lu, M. Q. Meng, B. R. Shi, X. Wang, D. Y. Shen, and Y. G. Liu, “Double barred waveguides in KTiOPO4 formed by MeV He ion implantation,” Solid State Commun. 106, 173–175 (1998). [CrossRef]
  11. K. M. Wang, M. Q. Meng, F. Lu, X. D. Liu, T. B. Xu, P. R. Zhu, D. Y. Shen, and Y. H. Tian, “Waveguide investigation in Er-implanted KTiOPO4 by MeV He ion implantation,” Mater. Sci. Eng. B 52, 8–11 (1998). [CrossRef]
  12. P. Bindner, A. Boudrioua, P. Moretti, and J. C. Loulergue, “Refractive index behaviors of helium implanted optical planar waveguides in LiNbO3, KTiOPO4 and Li2B4O7,” Nucl. Instrum. Methods Phys. Res. Sect. B 142, 329–337 (1998). [CrossRef]
  13. T. Opfermann, T. Bachmann, W. Wesch, and M. Rottschalk, “He+ implantation for waveguide fabrication in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. Sect. B 148, 710–714 (1999). [CrossRef]
  14. F. Schrempel, C. Beeker, J. Fick, and W. Wesch, “Waveguide barriers with adjustable refractive index produced in KTP by irradiation with He- and Li-ions,” Nucl. Instrum. Methods Phys. Res. Sect. B 257, 484–487 (2007). [CrossRef]
  15. F. Chen, Y. Tan, L. Wang, D. C. Hou, and Q. M. Lu, “Optical channel waveguides with trapezoidal-shaped cross sections in KTiOPO4 crystal fabricated by ion implantation,” Appl. Surf. Sci. 254, 1822–1824 (2008). [CrossRef]
  16. K. M. Wang, F. Lu, H. Hu, F. Chen, B. R. Shi, D. Y. Shen, X. M. Wang, and Y. G. Liu, “Planar waveguide formation in KTiOPO4 by MeV Ni+ ion implantation,” Opt. Commun. 182, 357–360 (2000). [CrossRef]
  17. F. Chen, H. Hu, Q. M. Lu, K. M. Wang, F. Lu, B. R. Shi, and D. Y. Shen, “Refractive index profiles of MeV phosphor ion implanted planar waveguide in KTP,” Appl. Surf. Sci. 183, 39–42 (2001). [CrossRef]
  18. F. Schrempel, T. Höche, J. P. Ruske, U. Grusemann, and W. Wesch, “Depth dependence of radiation damage in Li-implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 202–207 (2002). [CrossRef]
  19. F. Chen, X. L. Wang, K. M. Wang, B. R. Shi, Q. M. Lu, D. Y. Shen, and N. Rui, “Analysis of refractive index profile in a silicon ion-implanted KTiOPO4 waveguide,” Mater. Lett. 57, 1197–1201 (2003). [CrossRef]
  20. L. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Enhanced refractive index well-confined planar and channel waveguides in KTiOPO4 produced by MeV C3+ ion implantation with low dose,” Appl. Phys. B 94, 295–299 (2009). [CrossRef]
  21. D. T. Y. Wei, W. W. Lee, and L. R. Bloom, “Large refractive index change induced by ion implantation in lithium niobate,” Appl. Phys. Lett. 25, 329–331 (1974). [CrossRef]
  22. V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. Sect. B 168, 498–520 (2000). [CrossRef]
  23. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40, 3759–3761 (2001). [CrossRef]
  24. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007). [CrossRef]
  25. J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys. 108, 033105 (2010). [CrossRef]
  26. S. H. Wemple and M. DiDomenico, “Theory of the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1, 193–202 (1970). [CrossRef]
  27. Z. W. Hu, P. A. Thomas, and P. Q. Huang, “High-resolution x-ray diffraction and topographic study of ferroelectric domains and absolute structural polarity of KTiOPO4 via anomalous scattering,” Phys. Rev. B 56, 8559–8565 (1997). [CrossRef]
  28. G. Rosenman, A. Skliar, M. Oron, and M. Katz, “Polarization reversal in KTiOPO4 crystals,” Phys. D: Appl. Phys. 30, 277–282 (1997). [CrossRef]
  29. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett. 27, 17–20 (1996). [CrossRef]
  30. D. Shilo, E. Lakin, and E. Zolotoyabko, “Comprehensive strain analysis in thin films based on high-resolution x-ray diffraction: Application to implanted LiNbO3,” Phys. Rev. B 63, 205420 (2001). [CrossRef]
  31. D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91, 112908 (2007). [CrossRef]
  32. P. Bernasconi, M. Zgonik, and P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals,” J. Appl. Phys. 78, 2651–2658 (1995). [CrossRef]
  33. M. C. Gupta and J. Ballato, The Handbook of Photonics(Second Ed.) (CRC Press, 2007).
  34. M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscheny, and P. Günter, “Materials constants of KNbO3 relevant for electro-and acousto-optics,” J. Appl. Phys. 74, 1287–1297 (1993). [CrossRef]
  35. S. Haussühl, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiPO4, KxRb1−xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29, 583–589 (1994). [CrossRef]
  36. I. I. Zubrinov, V. K. Sapozhnikov, E. V. Pestrykov, and V. V. Atuchin, “Elastic and elastooptic properties of KTiOPO4,” Proc. SPIE 5129, 249–254 (2003). [CrossRef]
  37. H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995). [CrossRef]
  38. M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005). [CrossRef]
  39. L. C. Feldman and J. W. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41, 3776–3782 (1970). [CrossRef]
  40. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited