OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 13 — May. 1, 2012
  • pp: 2477–2484

Controlled bistability by using array defect layers in one-dimensional nonlinear photonic crystals

Mohammad Aghaie, Davud Hebri, Amir Ghaedzadeh, and Hossein Bazyar  »View Author Affiliations

Applied Optics, Vol. 51, Issue 13, pp. 2477-2484 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (990 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using analytical modeling and detailed numerical simulations, we investigate the input-output transmission regimes in one-dimensional (1D) nonlinear photonic crystal including array defect layers. A coupled-mode system is derived from the Maxwell equations and analyzed for the stationary-transmission regime in the new proposed structure. Using the idea about introducing defect layers into 1D nonlinear photonic crystals, a new method for creating and controlling optical bistability is proposed. The periodic optical structures with array defect layers can be used as all optical switches between lower- and higher-transmissive states, whereas it possesses one jumping from a low-transmissive state to a transparent state.

© 2012 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

Original Manuscript: December 13, 2011
Revised Manuscript: February 16, 2012
Manuscript Accepted: February 17, 2012
Published: May 1, 2012

Mohammad Aghaie, Davud Hebri, Amir Ghaedzadeh, and Hossein Bazyar, "Controlled bistability by using array defect layers in one-dimensional nonlinear photonic crystals," Appl. Opt. 51, 2477-2484 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36, 1413–1415 (2011). [CrossRef]
  2. E. Heydaria, E. Mohajerani, and A. Shamsa, “All optical switching in azo-polymer planar waveguide,” Opt. Commun. 284, 1208–1212 (2011). [CrossRef]
  3. W. Zhang and S. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283, 2622–2626 (2010). [CrossRef]
  4. Y. Dumeige, C. Arnaud, and P. Feron, “Combining FDTD with coupled mode theories for bistability in micro-ring resonators,” Opt. Commun. 250, 376–383 (2005). [CrossRef]
  5. Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 103106–103110 (2011). [CrossRef]
  6. C. F. Li and Z. G. Zang, “Optical switching in a nonlinear-fiber connected long-period fiber grating pair,” Chin. Opt. Lett. 35, 1919–1923 (2008).
  7. Z. G. Zang and Y. J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012). [CrossRef]
  8. Z. Zang, “Numerical analysis of optical bistability based on fiber Bragg grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2012). [CrossRef]
  9. N. G. R. Broderick, D. Taverner, and D. J. Richardson, “Nonlinear switching in fibre Bragg gratings,” Opt. Express 3, 447–453 (1998). [CrossRef]
  10. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All‐optical switching in a nonlinear periodic‐waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992). [CrossRef]
  11. G. Assanto and G. I. Stegeman, “Optical bistability in nonlocally nonlinear periodic structures,” Appl. Phys. Lett. 56, 2285–2287 (1990). [CrossRef]
  12. J. He and H. E. Cada, “Optical bistability in semiconductor periodic structures,” IEEE J. Quantum Electron. 27, 1182–1188 (1991). [CrossRef]
  13. D. Pelinovsky, L. Brzozowski, and E. H. Sargent, “Transmission regimes of periodic nonlinear optical structures,” Phys. Rev. E 62, R4536–R4539 (2000). [CrossRef]
  14. D. Pelinovsky, L. Brzozowski, J. Sears, and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. I. Analysis,” J. Opt. Soc. Am. B 19, 43–53 (2002). [CrossRef]
  15. S. Radic, N. George, and G. P. Agrawal, “Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures,” J. Opt. Soc. Am. B 12, 671–680(1995). [CrossRef]
  16. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995). [CrossRef]
  17. C. M. de Sterke and J. E. Sipe, “Gap solitons,” E. Wolf, ed., Progress in Optics 33, 203–260 (1994). [CrossRef]
  18. W. Samir, S. J. Garth, and C. Past, “Interplay of grating and nonlinearity in mode coupling,” J. Opt. Soc. Am. B 11, 64–71 (1994). [CrossRef]
  19. B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and multiple soliton pulse generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998). [CrossRef]
  20. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997). [CrossRef]
  21. T. Hattori, N. Tsurumachi, and H. Nakatsuka, “Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 14, 348–355 (1997). [CrossRef]
  22. J. He and M. Cada, “Combined distributed feedback and Fabry Perot structures with a phase-matching layer for optical bistable devices,” Appl. Phys. Lett. 61, 2150–2152 (1992). [CrossRef]
  23. E. Lidorikis, K. Busch, Q. M. Li, C. T. Chan, and C. M. Soukoulis, “Optical nonlinear response of a single non-linear dielectric layer sandwiched between two linear dielectric structures,” Phys. Rev. B 56, 15090–15099 (1997). [CrossRef]
  24. P. Hou, Y. Chen, J. Shi, M. Shen, and Q. Wang, “Optical bistability in one-dimensional photonic band gap structures with coupled nonlinear defects,” Opt. Commun. 273, 441–445 (2007). [CrossRef]
  25. R. Wang, J. Dong, and D. Y. Xing, “Dispersive optical bistability in onedimensional doped photonic band gap structures,” Phys. Rev. E 55, 6301 (1997). [CrossRef]
  26. R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic-systems: The transition from photonic band-gaps to microcavities,” Phys. Rev. A 48, 2246–2250 (1993). [CrossRef]
  27. P. Tran, “Optical switching with a nonlinear photonic crystal: A numerical study,” Opt. Lett. 21, 1138–1140 (1996). [CrossRef]
  28. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  29. D. Pelinovsky and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. II. Computations,” J. Opt. Soc. Am. B 19, 1873–1889 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited