OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 13 — May. 1, 2012
  • pp: 2485–2490

Three-dimensional Dammann vortex array with tunable topological charge

Junjie Yu, Changhe Zhou, Wei Jia, Anduo Hu, Wugang Cao, Jun Wu, and Shaoqing Wang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 13, pp. 2485-2490 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (505 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a kind of true 3D array of focused vortices with tunable topological charge, called the 3D Dammann vortex array. This 3D Dammann vortex array is arranged into the structure of a true 3D lattice in the focal region of a focusing objective, and these focused vortices are located at each node of the 3D lattice. A scheme based on a Dammann vortex grating (DVG) and a mirror is proposed to provide a choice for changing the topological charge of the 3D Dammann vortex array. For experimental demonstration, a 5×5×5 Dammann vortex array is implemented by combining a 1×7 DVG, a 1×5 Dammann zone plate, and another 5×5 Dammann grating. The topological charge of this Dammann vortex array can be tuned (from 2 to +2 with an interval of +1) by moving and rotating the mirror to select different diffraction orders of the 1×7 DVG as the incident beam. Because of these attractive properties, this 3D Dammann vortex array should be of high interest for its potential applications in various areas, such as 3D simultaneous optical manipulation, 3D parallel vortex scanning microscope, and also parallel vortex information transmission.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(140.7010) Lasers and laser optics : Laser trapping
(230.1950) Optical devices : Diffraction gratings
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: January 17, 2012
Manuscript Accepted: March 21, 2012
Published: May 1, 2012

Junjie Yu, Changhe Zhou, Wei Jia, Anduo Hu, Wugang Cao, Jun Wu, and Shaoqing Wang, "Three-dimensional Dammann vortex array with tunable topological charge," Appl. Opt. 51, 2485-2490 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  2. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010). [CrossRef]
  3. G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17, 14567–14573 (2009). [CrossRef]
  4. J. Masajada, “Phase singularities in microscopic imaging,” Proc. SPIE 8338, 833806 (2011). [CrossRef]
  5. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef]
  6. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002). [CrossRef]
  7. G. A. Swartzlander, “The optical vortex lens,” Opt. Photon. News 17(11), 39–43 (2006). [CrossRef]
  8. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef]
  9. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175(2002). [CrossRef]
  10. M. Vaupel and C. O. Weiss, “Circling optical vortices,” Phys. Rev. A 51, 4078 (1995). [CrossRef]
  11. A. Dreischuh, S. Chervenkov, D. Neshev, G. G. Paulus, and H. Walther, “Generation of lattice structures of optical vortices,” J. Opt. Soc. Am. B 19, 550–556 (2002). [CrossRef]
  12. V. R. Daria, P. J. Rodrigo, and J. Gluckstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325 (2004). [CrossRef]
  13. S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Appl. Opt. 46, 7862–7867 (2007). [CrossRef]
  14. J. Davis, I. Moreno, J. Martínez, T. Hernandez, and D. Cottrell, “Creating 3D lattice patterns using programmable Dammann gratings,” Appl. Opt. 50, 3653–3657 (2011). [CrossRef]
  15. J. Yu, C. Zhou, W. Jia, W. Cao, S. Wang, J. Ma, and H. Cao, “Three-dimensional Dammann array,” Appl. Opt. 51, 1619–130 (2012).
  16. N. Zhang, X. C. Yuan, and R. E. Burge, “Extending the detection range of optical vortices by Dammann vortex gratings,” Opt. Lett. 35, 3495–3497 (2010). [CrossRef]
  17. L. Janicijevic and S. Topuzoski, “Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings,” J. Opt. Soc. Am. A 25, 2659–2669 (2008). [CrossRef]
  18. I. Moreno, J. A. Davis, B. M. L. Pascoguin, M. J. Mitry, and D. M. Cottrell, “Vortex sensing diffraction gratings,” Opt. Lett. 34, 2927–2929 (2009). [CrossRef]
  19. C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt. 34, 5961–5969 (1995). [CrossRef]
  20. M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, “Fast focus field calculations,” Opt. Express 14, 11277–11291 (2006). [CrossRef]
  21. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 4 (2003). [CrossRef]
  22. M. Martínez-Corral, L. Muñoz-Escrivá, and A. Pons, “Three-dimensional behavior of apodized nontelecentric focusing systems,” Appl. Opt. 40, 3164–3168 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited