OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2554–2558

Tunable graphene Q-switched erbium-doped fiber laser with suppressed self-mode locking effect

Da-Peng Zhou, Li Wei, and Wing-Ki Liu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 14, pp. 2554-2558 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Self-mode locking effect in a wideband tunable graphene-based passively Q-switched erbium-doped fiber laser has been observed experimentally. Q-switching is achieved by using graphene as a saturable absorber, while a tunable bandpass filter with a narrow bandwidth is used to obtain wideband tunability. We propose to suppress the modulation on each pulse from self-mode locking by introducing three subring resonators constructed with three 3 dB couplers into the laser ring cavity. Moreover, the laser output characteristics with respect to pump power are studied in detail. A stable Q-switched erbium-doped fiber laser with a tunable range from 1522 nm to 1568 nm is demonstrated experimentally.

© 2012 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 22, 2011
Revised Manuscript: March 14, 2012
Manuscript Accepted: March 19, 2012
Published: May 4, 2012

Da-Peng Zhou, Li Wei, and Wing-Ki Liu, "Tunable graphene Q-switched erbium-doped fiber laser with suppressed self-mode locking effect," Appl. Opt. 51, 2554-2558 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “All-fiber passively Q-switched low-threshold erbium laser,” Opt. Lett. 26, 343–345 (2001). [CrossRef]
  2. J. Y. Huang, S. C. Huang, H. L. Chang, K. W. Su, Y. F. Chen, and K. F. Huang, “Passive Q switching of Er-Yb fiber laser with semiconductor saturable absorber,” Opt. Express 16, 3002–3007 (2008). [CrossRef]
  3. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29, 1581–1583 (2004). [CrossRef]
  4. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32, 2242–2244 (2007). [CrossRef]
  5. D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett. 22, 9–11 (2010). [CrossRef]
  6. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009). [CrossRef]
  7. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009). [CrossRef]
  8. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010). [CrossRef]
  9. Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010). [CrossRef]
  10. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35, 3709–3711 (2010). [CrossRef]
  11. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011). [CrossRef]
  12. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010). [CrossRef]
  13. P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286–290 (1993). [CrossRef]
  14. M. Nakazawa, K. Suzuki, H. Kubota, and Y. Kimura, “Self-Q-switching and mode locking in a 1.53 um fiber ring laser with saturable absorption in erbium-doped fiber at 4.2 K,” Opt. Lett. 18, 613–615 (1993). [CrossRef]
  15. V. N. Philippov, A. V. Kir’yanov, and S. Unger, “Advanced configuration of erbium fiber passively Q-switched laser with Co2+:ZnSe crystal as saturable absorber,” IEEE Photon. Technol. Lett. 16, 57–59 (2004). [CrossRef]
  16. D. Lin, K. Xia, R. Li, X. Li, G. Li, K. Ueda, and J. Li, “Radially polarized and passively Q-switched fiber laser,” Opt. Lett. 35, 3574–3576 (2010). [CrossRef]
  17. B. Dong, J. Hao, J. Hu, and C. Y. Liaw, “Short linear-cavity Q-switched fiber laser with a compact short carbon nanotube based saturable absorber,” Opt. Fiber Technol. 17, 105–107 (2011). [CrossRef]
  18. F. Zhang and J. W. Y. Lit, “Direct-coupling single-mode fiber ring resonator,” J. Opt. Soc. Am. B 5, 1347–1355(1988). [CrossRef]
  19. C.-C. Lee, Y.-K. Chen, and S.-K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Opt. Lett. 23, 358–360 (1998). [CrossRef]
  20. C.-H. Yeh, T.-T. Huang, H.-C. Chien, C.-H. Ko, and S. Chi, “Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation,” Opt. Express 15, 382–386 (2006). [CrossRef]
  21. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  22. A. Roberts, D. Cormode, C. Reynolds, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99, 051912 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited