OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2568–2572

Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film

Yan Li, Yifan Liu, Qing Li, and Shin-Tson Wu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 14, pp. 2568-2572 (2012)
http://dx.doi.org/10.1364/AO.51.002568


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new electrode design for polarization-independent cylindrical lens using a polymer-stabilized blue phase liquid crystal (BPLC). The top electrode is coated with a transparent and resistive film to generate linearly varying electric potential from center to edge; while the bottom iridium tin oxide electrode has a constant potential. Therefore, the vertical electric field across the BPLC layer varies linearly over the lens aperture and a desired parabolic phase profile is obtained automatically according to the Kerr effect. Simulation results show that this simple device is polarization independent and it has parabolic-like phase profile in a large tuning range.

© 2012 Optical Society of America

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Optical Devices

History
Original Manuscript: January 26, 2012
Revised Manuscript: February 28, 2012
Manuscript Accepted: March 1, 2012
Published: May 7, 2012

Citation
Yan Li, Yifan Liu, Qing Li, and Shin-Tson Wu, "Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film," Appl. Opt. 51, 2568-2572 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-14-2568


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979). [CrossRef]
  2. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell,” Appl. Opt. 23, 278–289 (1984). [CrossRef]
  3. N. A. Riza and M. C. DeJule, “Three-terminal adaptive nematic liquid crystal lens device,” Opt. Lett. 19, 1013–1015 (1994). [CrossRef]
  4. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
  5. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004). [CrossRef]
  6. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1, 151–156 (2005). [CrossRef]
  7. H. Ren, D. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007). [CrossRef]
  8. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002). [CrossRef]
  9. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43, 652–653 (2004). [CrossRef]
  10. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006). [CrossRef]
  11. Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multielectrode driving liquid crystal (MeD-LC) lens,” Soc. Inf. Display Tech. Digest 40, 336–339 (2009). [CrossRef]
  12. Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18, 18506–18518 (2010). [CrossRef]
  13. A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999). [CrossRef]
  14. N. Fraval and J. L. B. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths,” Appl. Opt. 49, 2778–2783 (2010). [CrossRef]
  15. H. Kikuchi, M. Yokota, Y. Hiskado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002). [CrossRef]
  16. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311 (2005). [CrossRef]
  17. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009). [CrossRef]
  18. Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol. 5, 250–256 (2009). [CrossRef]
  19. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009). [CrossRef]
  20. Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011). [CrossRef]
  21. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36, 1404–1406 (2011). [CrossRef]
  22. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6, 49–51 (2010). [CrossRef]
  23. Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011). [CrossRef]
  24. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010). [CrossRef]
  25. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19, 8045–8050 (2011). [CrossRef]
  26. C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization-independent multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19, 17402–17407 (2011). [CrossRef]
  27. A. F. Naumov and G. Vdovin, “Multichannel liquid-crystal-based wave-front corrector with modal influence functions,” Opt. Lett. 23, 1550–1552 (1998). [CrossRef]
  28. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998). [CrossRef]
  29. J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 50, 337–348 (1875).
  30. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010). [CrossRef]
  31. H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011). [CrossRef]
  32. M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E 83, 041706 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited