OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2589–2600

Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator

Joseph D. Miller, Sascha R. Engel, Johannes W. Tröger, Terrence R. Meyer, Thomas Seeger, and Alfred Leipertz  »View Author Affiliations


Applied Optics, Vol. 51, Issue 14, pp. 2589-2600 (2012)
http://dx.doi.org/10.1364/AO.51.002589


View Full Text Article

Enhanced HTML    Acrobat PDF (1006 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance characteristics of a new CH planar laser-induced fluorescence (PLIF) imaging system composed of a kHz-rate multimode-pumped optical parametric oscillator (OPO) and high-speed intensified CMOS camera are investigated in laminar and turbulent CH4-H2-air flames. A multi-channel Nd:YAG cluster that produces up to 225 mJ at 355 nm with multiple-pulse spacing of 100 μs (corresponding to 10 kHz) is used to pump an OPO to produce up to 6 mJ at 431 nm for direct excitation of the A-X (0, 0) band of the CH radical. Single-shot signal-to-noise ratios of 821 and 7.51 are recorded in laminar premixed flames relative to noise in the background and within the flame layer, respectively. The spatial resolution and image quality are sufficient to accurately measure the CH layer thickness of 0.4mm while imaging the detailed evolution of turbulent flame structures over a 20 mm span. Background interferences due to polycyclic-aromatic hydrocarbons and Rayleigh scattering are minimized and, along with signal linearity, allow semi-quantitative analysis of CH signals on a shot-to-shot basis. The effects of design features, such as cavity finesse and passive injection seeding, on conversion efficiency, stability, and linewidth of the OPO output are also discussed.

© 2012 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 23, 2011
Revised Manuscript: February 5, 2012
Manuscript Accepted: February 6, 2012
Published: May 8, 2012

Citation
Joseph D. Miller, Sascha R. Engel, Johannes W. Tröger, Terrence R. Meyer, Thomas Seeger, and Alfred Leipertz, "Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator," Appl. Opt. 51, 2589-2600 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-14-2589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008). [CrossRef]
  2. J. D. Miller, M. N. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009). [CrossRef]
  3. J. Sjoholm, E. Kristensson, M. Richter, M. Alden, G. Goritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009). [CrossRef]
  4. I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009). [CrossRef]
  5. I. Boxx, M. Stohr, C. Carter, and W. Meier, “Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor,” Combust. Flame 157, 1510–1525 (2010). [CrossRef]
  6. C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999). [CrossRef]
  7. N. Jiang and W. R. Lempert, “Ultrahigh-frame-rate nitric oxide planar laser-induced fluorescence imaging,” Opt. Lett. 33, 2236–2238 (2008). [CrossRef]
  8. N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011). [CrossRef]
  9. N. Jiang, M. C. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011). [CrossRef]
  10. J. D. Miller, S. R. Engel, T. R. Meyer, T. Seeger, and A. Leipertz, “High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator,” Opt. Lett. 36, 3927–3929 (2011). [CrossRef]
  11. N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Optics 48, B23–B31 (2009). [CrossRef]
  12. Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007). [CrossRef]
  13. J. A. Sutton and J. F. Driscoll, “Optimization of CH fluorescence diagnostics in flames: Range of applicability and improvements with hydrogen addition,” Appl. Opt. 42, 2819–2828 (2003). [CrossRef]
  14. M. Tanahashi, S. Taka, M. Shimura, and T. Miyauchi, “CH double-pulsed PLIF measurement in turbulent premixed flame,” Exp. Fluids 45, 323–332 (2008). [CrossRef]
  15. K. A. Watson, K. M. Lyons, C. D. Carter, and J. M. Donbar, “Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames,” Proc. Combust. Inst. 29, 1905–1912 (2002). [CrossRef]
  16. K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame,” Combust. Flame 123, 252–265 (2000). [CrossRef]
  17. Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, and M. Alden, “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame,” Combust. Flame 157, 1087–1096(2010). [CrossRef]
  18. J. Kiefer, F. Ossler, Z. S. Li, and M. Alden, “Spectral interferences from formaldehyde in CH PLIF flame front imaging with broadband B-X excitation,” Combust. Flame 158, 583–585 (2011). [CrossRef]
  19. SNLO nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, NM.
  20. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  21. M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997). [CrossRef]
  22. Y. B. He and B. J. Orr, “Tunable single-mode operation of a pulsed optical parametric oscillator pumped by a multimode laser,” Appl. Opt. 40, 4836–4848 (2001). [CrossRef]
  23. G. A. Raiche and J. B. Jeffries, “Laser-induced fluorescence temperature-measurements in a DC arcjet used for diamond deposition,” Appl. Opt. 32, 4629–4635 (1993). [CrossRef]
  24. K. J. Rensberger, J. B. Jeffries, R. A. Copeland, K. Kohsehoinghaus, M. L. Wise, and D. R. Crosley, “Laser-induced fluorescence determination of temperatures in low-pressure flames,” Appl. Opt. 28, 3556–3566 (1989). [CrossRef]
  25. J. Luque and D. R. Crosley, “LIFBASE: Database and spectral simulation program (Version 1.5),” SRI International MP 99-009 (1999).
  26. R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B doi:10.1007/s00340-011-4658-1 (2011). [CrossRef]
  27. V. Weber, J. Brübach, R. Gordon, and A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103, 421–433 (2011). [CrossRef]
  28. J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996). [CrossRef]
  29. C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66, 129–132 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited