OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2601–2605

All-optical switch using optically controlled two mode interference coupler

Partha Pratim Sahu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 14, pp. 2601-2605 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we have introduced optically controlled two-mode interference (OTMI) coupler having silicon core and GaAsInP cladding as an all-optical switch. By taking advantage of refractive index modulation by launching optical pulse into cladding region of TMI waveguide, we have shown optically controlled switching operation. We have studied optical pulse-controlled coupling characteristics of the proposed device by using a simple mathematical model on the basis of sinusoidal modes. The device length is less than that of previous work. It is also seen that the cross talk of the OTMI switch is not significantly increased with fabrication tolerances (±δw) in comparison with previous work.

© 2012 Optical Society of America

OCIS Codes
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Integrated Optics

Original Manuscript: December 19, 2011
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 9, 2012
Published: May 8, 2012

Partha Pratim Sahu, "All-optical switch using optically controlled two mode interference coupler," Appl. Opt. 51, 2601-2605 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Xia, Y. Liang, and K. H. Ahn, “All optical packet drop demonstration using 100  Gb/s words by integrating fiber based components,” IEEE Photon Technology Lett. 10, 153–155 (1998). [CrossRef]
  2. J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).
  3. I. Glesk, J. P. Solokoff, and P. R. Prucnal, “All optical address recognition and self routing in a 250  Gbit/s packet switched network,” Electron Lett. 30, 1322–1323 (1994). [CrossRef]
  4. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  5. R. Kashahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structures of silica-based planar light wave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol. 20, 993–1000 (2002). [CrossRef]
  6. Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “Rearrangeable non-blocking thermooptic 4×4 switching matrix in silicon on insulator,” IEE Proc. Optoelectron. 152, 161–163 (2005).
  7. P. Zappe, Introduction to Semiconductor Integrated Optics(Artech House, 1995).
  8. M. K. Chin, C. W. Lee, S. Y. Lee, and S. Darmawan, “High-index-contrast waveguides and devices,” Appl. Opt. 44, 3077–3086 (2005). [CrossRef]
  9. P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265–269 (2008).
  10. Z. Li, Z. Chen, and B. Li, “Optical pulse controlled all optical logic gates in siGe/Si multimode interference,” Opt. Express 13, 1033–1037 (2005). [CrossRef]
  11. L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices on self imaging: principle and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  12. B. M. Isfahani, T. A. Tameh, N. Granpayeh, and A. R. M. Javan, “All optical NOR gate based on nonlinear photonic crystal mirroring resonators,” J. Opt. Soc. Am. B 26, 1097–1102 (2009). [CrossRef]
  13. Q. Xu and M. Lipson, “All optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–928 (2007). [CrossRef]
  14. P. P. Sahu, “Compact optical multiplexer using silicon nano-waveguide,” IEEE J. Sel. Top. Quantum Electron. 15, 1537–1540 (2009). [CrossRef]
  15. B. Li and S. J. Chua, “Two mode interference photonic waveguide switch,” IEEE J. Lightwave Technol. 21, 1685–1690 (2003). [CrossRef]
  16. P. P. Sahu, “Thermooptic two mode interference optical waveguide device with fast response time,” Fiber Integr. Opt. 29, 284–293 (2010). [CrossRef]
  17. K. Vlachos, N. Pieros, C. Bintjas, G. Theophilopoulos, and H. Avramopoulos, “Ultrfast time domain technology and its applications in signal processing,” J. Lightwave Technol. 21, 1857–1868 (2003). [CrossRef]
  18. G. S. Kanter, P. Kumar, K. R. Parameswaram, and M. M. Fejer, “Wavelength selective pulsed optical switching based on cascaded second order nonliearity in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 13, 341–343 (2001). [CrossRef]
  19. D. Sridharan and E. Waks, “All optical switch using quantum dots saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron. 47, 31–39 (2011). [CrossRef]
  20. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kurmochi, “Fast bistable all optical switch and memory on a silicon photonic crystal on chip,” Opt. Lett. 30, 2575–2577 (2005). [CrossRef]
  21. Z. H. Zhu, W. M. Ye, J. R. Ji, X. Yuan, and C. Zen, “High contrast light by light switching and AND gate based on nonlinear photonic crystals,” Opt. Express 14, 1783–1788 (2006). [CrossRef]
  22. A. Bahrami, S. Mohammadnejad, and A. Rostami, “All-optical multi-mode interference switch using non-linear directional coupler as a passive phase shifter,” Fiber Integr. Opt. 30, 139–150 (2011). [CrossRef]
  23. R. Ghayour, A. N. Taheri, and M. T. Fathi, “Integrated Mach-Zehnder based 2×2 all optical switch using nonlinear two-mode interference waveguide,” Appl. Opt. 47, 632–638 (2008). [CrossRef]
  24. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High speed optical modulationbased on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007). [CrossRef]
  25. Z. Li, Z. Chen, and B. Li, “Optical pulse controlled all optical logic gates in siGe/Si multimode interference,” Opt. Express 13, 1033–1037 (2005). [CrossRef]
  26. R. S. Grant and W. Sibbett, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited