OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2624–2632

Multi-spatial-frequency and phase-shifting profilometry using a liquid crystal phase modulator

Kyung-Il Joo, Chang-Sub Park, Min-Kyu Park, Kyung-Woo Park, Ji-Sub Park, Youngmin Seo, Joonku Hahn, and Hak-Rin Kim  »View Author Affiliations

Applied Optics, Vol. 51, Issue 14, pp. 2624-2632 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical profilometry is widely applied for measuring the morphology of objects by projecting predetermined patterns on them. In this technique, the compact size is one of the interesting issues for practical applications. The generation of pattern by the interference of coherent light sources has a potential to reduce the dimension of the illumination part. Moreover, this method can make fine patterns without projection optics, and the illumination part is free of restriction from the numerical aperture of the projection optics. In this paper, a phase-shifting profilometry is implemented by using a single liquid crystal (LC) cell. The LC phase modulator is designed to generate the interference patterns with several different spatial frequencies by changing selection of the spacing between the micro-pinholes. We manufactured the LC phase modulator and calibrated it by measuring the phase modulation amount depending on an applied voltage. Our optical profilometry using the single LC cell can generate multi-spatial frequency patterns as well as four steps of the phase-shifted patterns. This method can be implemented compactly, and the reconstructed depth profile is obtained without a phase-unwrapping algorithm.

© 2012 Optical Society of America

OCIS Codes
(060.2630) Fiber optics and optical communications : Frequency modulation
(090.0090) Holography : Holography
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Image Processing

Original Manuscript: January 3, 2012
Published: May 8, 2012

Kyung-Il Joo, Chang-Sub Park, Min-Kyu Park, Kyung-Woo Park, Ji-Sub Park, Youngmin Seo, Joonku Hahn, and Hak-Rin Kim, "Multi-spatial-frequency and phase-shifting profilometry using a liquid crystal phase modulator," Appl. Opt. 51, 2624-2632 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Chang and C. S. Ho, “Phase-measuring profilometry using sinusoidal grating,” Exp. Mech. 33, 117–122 (1993). [CrossRef]
  2. F. Wu, H. Zhang, and M. J. Lalor, “A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry,” Opt. Commun. 187, 347–357 (2001). [CrossRef]
  3. C.-S. Park, K.-W. Park, U. Jung, J. Kim, S.-W. Kang, and H.-R. Kim, “Dynamic fringe pattern generation using an electrically tunable liquid crystal Fabry-Perot cell for a miniaturized optical 3-D surface scanning profilometer,” Mol. Cryst. Liq. Cryst. 526, 28–37 (2010). [CrossRef]
  4. M. R. R. Gesualdi, D. Soga, and M. Muramatsu, “Real-Time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique,” Opt. Lasers Eng. 44, 56–67 (2006). [CrossRef]
  5. M. S. Mermeistein, D. L. Feldkhum, and L. G. Shirley, “Video-rate surface profiling with acousto-optic accordion fringe interferometry,” Opt. Eng. 39, 106–113 (2000). [CrossRef]
  6. D. S. Metha, S. K. Dubey, M. M. Hossain, and C. Shakher, “Simple multifrequency and phase shifting fringe-projection system based on two-wavelength lateral shearing interferometry for three-dimensional profilometry,” Appl. Opt. 44, 7515–7521 (2005). [CrossRef]
  7. C. J. Yu, E. Jang, H.-R. Kim, and S. D. Lee, “Design and fabrication of high-performance liquid crystal gratings,” Mol. Cryst. Liq. Cryst. 454, 765–778 (2006). [CrossRef]
  8. T. C. Kraan, T. V. Bommel, and R. A. M. Hikmet, “Modeling liquid-crystal gradient-index lenses,” J. Opt. Soc. Am. A 24, 3467–3477 (2007). [CrossRef]
  9. D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystal,” J. Appl. Phys. 91, 6060–6065 (2002). [CrossRef]
  10. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulator using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005). [CrossRef]
  11. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Q. Mu, “Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision,” Opt. Express 12, 6403–6409 (2004). [CrossRef]
  12. K. M. Hagen, V. Burgarth, and A. A. Zeid, “Profilometry with a multi-wavelength diode laser interferometer,” Meas. Sci. Technol. 15, 741–746 (2004). [CrossRef]
  13. W. Su and H. Liu, “Calibration-based two-frequency projected fringe profilometry: a robust, accurate, and single-shot measurement for objects with large depth discontinuities,” Opt. Express 14, 9178–9187 (2006). [CrossRef]
  14. E. Kim, J. Hahn, H. Kim, and B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17, 7818–7830 (2009). [CrossRef]
  15. E. B. Li, X. Peng, J. Xi, J. F. Chicharo, J. Q. Yao, and D. W. Zhang, “Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3D profilometry,” Opt. Express 13, 1561–1569 (2005). [CrossRef]
  16. E. A. Barbosa, A. A. V. Filho, M. R. R. Gesualdi, B. G. Curcio, M. Muramatsu, and D. Soga, “Single-exposure, photorefractive holographic surface contouring with multiwavelength diode lasers,” J. Opt. Soc. Am. A 22, 2872–2879 (2005). [CrossRef]
  17. M. Tsai, H. Huang, M. Itoh, and T. Yatagai, “Multiwavelength fringe scanning profilometry for wide gapped sample,” Opt. Eng. 39, 970–977 (2000). [CrossRef]
  18. E. A. Barbosa, E. A. Lima, M. R. R. Gesualdi, and M. Muramatsu, “Enhanced multiwavelength holographic profilometry by laser mode selection,” Opt. Eng. 46, 075601 (2007). [CrossRef]
  19. J. Hahn, H. Kim, and B. Lee, “Optimization of the spatial light modulation with twisted nematic liquid crystals by a genetic algorithm,” Appl. Opt. 47, D87–D95 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited